Cargando…

Impact of Electrode Position on the Elicitation of Sodium Spikes in Retinal Bipolar Cells

Bipolar cells of the magnocellular pathway in the primate retina can generate action potentials because they have an axonal segment with high sodium channel density, comparable to the sodium channel band in retinal ganglion cells or pyramidal cells. The similarity between the non-human primate and t...

Descripción completa

Detalles Bibliográficos
Autores principales: Rattay, Frank, Bassereh, Hassan, Fellner, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5730545/
https://www.ncbi.nlm.nih.gov/pubmed/29242502
http://dx.doi.org/10.1038/s41598-017-17603-8
Descripción
Sumario:Bipolar cells of the magnocellular pathway in the primate retina can generate action potentials because they have an axonal segment with high sodium channel density, comparable to the sodium channel band in retinal ganglion cells or pyramidal cells. The similarity between the non-human primate and the human retina is of interest for the research on retinal implants for the blind, and especially, the conditions to elicit sodium spikes in bipolar cells using extracellular stimulation. A comparison of excitation characteristics of three model neurons, a bipolar cell, a retinal ganglion cell, and a cortical pyramidal cell, demonstrates the similarities and differences regarding stimulation with microelectrodes. Moving a microelectrode parallel to the axon of a neuron commonly allows to generate spikes for every position – and this rule holds both for cathodic and anodic pulses. However, for the simulated bipolar cell anodic pulses cannot generate sodium spikes directly. Further, there is only a small region for electrode placing where extracellular cathodic stimulation causes direct spike initiation in the sodium channel band. For all other positions, a sodium spike can only be generated by antidromic current flow originating from strongly depolarized terminals.