Cargando…

Prohibitin: a potential therapeutic target in tyrosine kinase signaling

Prohibitin is a pleiotropic protein that has roles in fundamental cellular processes, such as cellular proliferation and mitochondrial housekeeping, and in cell- or tissue-specific functions, such as adipogenesis and immune cell functions. The different functions of prohibitin are mediated by its ce...

Descripción completa

Detalles Bibliográficos
Autores principales: Ande, Sudharsana Rao, Xu, Yang Xin Zi, Mishra, Suresh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5730683/
https://www.ncbi.nlm.nih.gov/pubmed/29263933
http://dx.doi.org/10.1038/sigtrans.2017.59
Descripción
Sumario:Prohibitin is a pleiotropic protein that has roles in fundamental cellular processes, such as cellular proliferation and mitochondrial housekeeping, and in cell- or tissue-specific functions, such as adipogenesis and immune cell functions. The different functions of prohibitin are mediated by its cell compartment-specific attributes, which include acting as an adaptor molecule in membrane signaling, a scaffolding protein in mitochondria, and a transcriptional co-regulator in the nucleus. However, the precise relationship between its distinct cellular localization and diverse functions remain largely unknown. Accumulating evidence suggests that the phosphorylation of prohibitin plays a role in a number of cell signaling pathways and in intracellular trafficking. Herein, we discuss the known and potential importance of the site-specific phosphorylation of prohibitin in regulating these features. We will discuss this in the context of new evidence from tissue-specific transgenic mouse models of prohibitin, including a mutant prohibitin lacking a crucial tyrosine phosphorylation site. We conclude with the opinion that prohibitin can be used as a potential target for tyrosine kinase signal transduction-targeting therapy, including in insulin, growth factors, and immune signaling pathways.