Cargando…
A mechanism of cohesin‐dependent loop extrusion organizes zygotic genome architecture
Fertilization triggers assembly of higher‐order chromatin structure from a condensed maternal and a naïve paternal genome to generate a totipotent embryo. Chromatin loops and domains have been detected in mouse zygotes by single‐nucleus Hi‐C (snHi‐C), but not bulk Hi‐C. It is therefore unclear when...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5730859/ https://www.ncbi.nlm.nih.gov/pubmed/29217590 http://dx.doi.org/10.15252/embj.201798083 |
_version_ | 1783286420100612096 |
---|---|
author | Gassler, Johanna Brandão, Hugo B Imakaev, Maxim Flyamer, Ilya M Ladstätter, Sabrina Bickmore, Wendy A Peters, Jan‐Michael Mirny, Leonid A Tachibana, Kikuë |
author_facet | Gassler, Johanna Brandão, Hugo B Imakaev, Maxim Flyamer, Ilya M Ladstätter, Sabrina Bickmore, Wendy A Peters, Jan‐Michael Mirny, Leonid A Tachibana, Kikuë |
author_sort | Gassler, Johanna |
collection | PubMed |
description | Fertilization triggers assembly of higher‐order chromatin structure from a condensed maternal and a naïve paternal genome to generate a totipotent embryo. Chromatin loops and domains have been detected in mouse zygotes by single‐nucleus Hi‐C (snHi‐C), but not bulk Hi‐C. It is therefore unclear when and how embryonic chromatin conformations are assembled. Here, we investigated whether a mechanism of cohesin‐dependent loop extrusion generates higher‐order chromatin structures within the one‐cell embryo. Using snHi‐C of mouse knockout embryos, we demonstrate that the zygotic genome folds into loops and domains that critically depend on Scc1‐cohesin and that are regulated in size and linear density by Wapl. Remarkably, we discovered distinct effects on maternal and paternal chromatin loop sizes, likely reflecting differences in loop extrusion dynamics and epigenetic reprogramming. Dynamic polymer models of chromosomes reproduce changes in snHi‐C, suggesting a mechanism where cohesin locally compacts chromatin by active loop extrusion, whose processivity is controlled by Wapl. Our simulations and experimental data provide evidence that cohesin‐dependent loop extrusion organizes mammalian genomes over multiple scales from the one‐cell embryo onward. |
format | Online Article Text |
id | pubmed-5730859 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-57308592017-12-18 A mechanism of cohesin‐dependent loop extrusion organizes zygotic genome architecture Gassler, Johanna Brandão, Hugo B Imakaev, Maxim Flyamer, Ilya M Ladstätter, Sabrina Bickmore, Wendy A Peters, Jan‐Michael Mirny, Leonid A Tachibana, Kikuë EMBO J Articles Fertilization triggers assembly of higher‐order chromatin structure from a condensed maternal and a naïve paternal genome to generate a totipotent embryo. Chromatin loops and domains have been detected in mouse zygotes by single‐nucleus Hi‐C (snHi‐C), but not bulk Hi‐C. It is therefore unclear when and how embryonic chromatin conformations are assembled. Here, we investigated whether a mechanism of cohesin‐dependent loop extrusion generates higher‐order chromatin structures within the one‐cell embryo. Using snHi‐C of mouse knockout embryos, we demonstrate that the zygotic genome folds into loops and domains that critically depend on Scc1‐cohesin and that are regulated in size and linear density by Wapl. Remarkably, we discovered distinct effects on maternal and paternal chromatin loop sizes, likely reflecting differences in loop extrusion dynamics and epigenetic reprogramming. Dynamic polymer models of chromosomes reproduce changes in snHi‐C, suggesting a mechanism where cohesin locally compacts chromatin by active loop extrusion, whose processivity is controlled by Wapl. Our simulations and experimental data provide evidence that cohesin‐dependent loop extrusion organizes mammalian genomes over multiple scales from the one‐cell embryo onward. John Wiley and Sons Inc. 2017-12-07 2017-12-15 /pmc/articles/PMC5730859/ /pubmed/29217590 http://dx.doi.org/10.15252/embj.201798083 Text en © 2017 The Authors. Published under the terms of the CC BY 4.0 license This is an open access article under the terms of the Creative Commons Attribution 4.0 (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Gassler, Johanna Brandão, Hugo B Imakaev, Maxim Flyamer, Ilya M Ladstätter, Sabrina Bickmore, Wendy A Peters, Jan‐Michael Mirny, Leonid A Tachibana, Kikuë A mechanism of cohesin‐dependent loop extrusion organizes zygotic genome architecture |
title | A mechanism of cohesin‐dependent loop extrusion organizes zygotic genome architecture |
title_full | A mechanism of cohesin‐dependent loop extrusion organizes zygotic genome architecture |
title_fullStr | A mechanism of cohesin‐dependent loop extrusion organizes zygotic genome architecture |
title_full_unstemmed | A mechanism of cohesin‐dependent loop extrusion organizes zygotic genome architecture |
title_short | A mechanism of cohesin‐dependent loop extrusion organizes zygotic genome architecture |
title_sort | mechanism of cohesin‐dependent loop extrusion organizes zygotic genome architecture |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5730859/ https://www.ncbi.nlm.nih.gov/pubmed/29217590 http://dx.doi.org/10.15252/embj.201798083 |
work_keys_str_mv | AT gasslerjohanna amechanismofcohesindependentloopextrusionorganizeszygoticgenomearchitecture AT brandaohugob amechanismofcohesindependentloopextrusionorganizeszygoticgenomearchitecture AT imakaevmaxim amechanismofcohesindependentloopextrusionorganizeszygoticgenomearchitecture AT flyamerilyam amechanismofcohesindependentloopextrusionorganizeszygoticgenomearchitecture AT ladstattersabrina amechanismofcohesindependentloopextrusionorganizeszygoticgenomearchitecture AT bickmorewendya amechanismofcohesindependentloopextrusionorganizeszygoticgenomearchitecture AT petersjanmichael amechanismofcohesindependentloopextrusionorganizeszygoticgenomearchitecture AT mirnyleonida amechanismofcohesindependentloopextrusionorganizeszygoticgenomearchitecture AT tachibanakikue amechanismofcohesindependentloopextrusionorganizeszygoticgenomearchitecture AT gasslerjohanna mechanismofcohesindependentloopextrusionorganizeszygoticgenomearchitecture AT brandaohugob mechanismofcohesindependentloopextrusionorganizeszygoticgenomearchitecture AT imakaevmaxim mechanismofcohesindependentloopextrusionorganizeszygoticgenomearchitecture AT flyamerilyam mechanismofcohesindependentloopextrusionorganizeszygoticgenomearchitecture AT ladstattersabrina mechanismofcohesindependentloopextrusionorganizeszygoticgenomearchitecture AT bickmorewendya mechanismofcohesindependentloopextrusionorganizeszygoticgenomearchitecture AT petersjanmichael mechanismofcohesindependentloopextrusionorganizeszygoticgenomearchitecture AT mirnyleonida mechanismofcohesindependentloopextrusionorganizeszygoticgenomearchitecture AT tachibanakikue mechanismofcohesindependentloopextrusionorganizeszygoticgenomearchitecture |