Cargando…

FFAR2-FFAR3 receptor heteromerization modulates short-chain fatty acid sensing

Free fatty acid receptors 2 and 3 (FFAR2/FFA2/GPR43 and FFAR3/FFA3/GPR41) are mammalian receptors for gut microbiota–derived short-chain fatty acids (SCFAs). These receptors are promising drug targets for obesity, colitis, colon cancer, asthma, and arthritis. Here, we demonstrate that FFAR2 and FFAR...

Descripción completa

Detalles Bibliográficos
Autores principales: Ang, Zhiwei, Xiong, Ding, Wu, Min, Ding, Jeak Ling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Federation of American Societies for Experimental Biology 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5731126/
https://www.ncbi.nlm.nih.gov/pubmed/28883043
http://dx.doi.org/10.1096/fj.201700252RR
_version_ 1783286470351519744
author Ang, Zhiwei
Xiong, Ding
Wu, Min
Ding, Jeak Ling
author_facet Ang, Zhiwei
Xiong, Ding
Wu, Min
Ding, Jeak Ling
author_sort Ang, Zhiwei
collection PubMed
description Free fatty acid receptors 2 and 3 (FFAR2/FFA2/GPR43 and FFAR3/FFA3/GPR41) are mammalian receptors for gut microbiota–derived short-chain fatty acids (SCFAs). These receptors are promising drug targets for obesity, colitis, colon cancer, asthma, and arthritis. Here, we demonstrate that FFAR2 and FFAR3 interact to form a heteromer in primary human monocytes and macrophages via proximity ligation assay, and during heterologous expression in HEK293 cells via bimolecular fluorescence complementation and fluorescence resonance energy transfer. The FFAR2-FFAR3 heteromer displayed enhanced cytosolic Ca(2+) signaling (1.5-fold increase relative to homomeric FFAR2) and β-arrestin-2 recruitment (30-fold increase relative to homomeric FFAR3). The enhanced heteromer signaling was attenuated by FFAR2 antagonism (CATPB), G(αq) inhibition (YM254890), or G(αi) inhibition (pertussis toxin). Unlike homomeric FFAR2/3, the heteromer lacked the ability to inhibit cAMP production but gained the ability to induce p38 phosphorylation in HEK293 and inflammatory monocytes via a CATPB- and YM254890-sensitive mechanism. Our data, taken together, reveal that FFAR2 and FFAR3 may interact to form a receptor heteromer with signaling that is distinct from the parent homomers—a novel pathway for drug targeting.—Ang, Z., Xiong, D., Wu, M., Ding, J. L. FFAR2-FFAR3 receptor heteromerization modulates short-chain fatty acid sensing.
format Online
Article
Text
id pubmed-5731126
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Federation of American Societies for Experimental Biology
record_format MEDLINE/PubMed
spelling pubmed-57311262017-12-18 FFAR2-FFAR3 receptor heteromerization modulates short-chain fatty acid sensing Ang, Zhiwei Xiong, Ding Wu, Min Ding, Jeak Ling FASEB J Research Free fatty acid receptors 2 and 3 (FFAR2/FFA2/GPR43 and FFAR3/FFA3/GPR41) are mammalian receptors for gut microbiota–derived short-chain fatty acids (SCFAs). These receptors are promising drug targets for obesity, colitis, colon cancer, asthma, and arthritis. Here, we demonstrate that FFAR2 and FFAR3 interact to form a heteromer in primary human monocytes and macrophages via proximity ligation assay, and during heterologous expression in HEK293 cells via bimolecular fluorescence complementation and fluorescence resonance energy transfer. The FFAR2-FFAR3 heteromer displayed enhanced cytosolic Ca(2+) signaling (1.5-fold increase relative to homomeric FFAR2) and β-arrestin-2 recruitment (30-fold increase relative to homomeric FFAR3). The enhanced heteromer signaling was attenuated by FFAR2 antagonism (CATPB), G(αq) inhibition (YM254890), or G(αi) inhibition (pertussis toxin). Unlike homomeric FFAR2/3, the heteromer lacked the ability to inhibit cAMP production but gained the ability to induce p38 phosphorylation in HEK293 and inflammatory monocytes via a CATPB- and YM254890-sensitive mechanism. Our data, taken together, reveal that FFAR2 and FFAR3 may interact to form a receptor heteromer with signaling that is distinct from the parent homomers—a novel pathway for drug targeting.—Ang, Z., Xiong, D., Wu, M., Ding, J. L. FFAR2-FFAR3 receptor heteromerization modulates short-chain fatty acid sensing. Federation of American Societies for Experimental Biology 2018-01 2017-09-07 /pmc/articles/PMC5731126/ /pubmed/28883043 http://dx.doi.org/10.1096/fj.201700252RR Text en © The Author(s) http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) (http://creativecommons.org/licenses/by-nc/4.0/) which permits noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Ang, Zhiwei
Xiong, Ding
Wu, Min
Ding, Jeak Ling
FFAR2-FFAR3 receptor heteromerization modulates short-chain fatty acid sensing
title FFAR2-FFAR3 receptor heteromerization modulates short-chain fatty acid sensing
title_full FFAR2-FFAR3 receptor heteromerization modulates short-chain fatty acid sensing
title_fullStr FFAR2-FFAR3 receptor heteromerization modulates short-chain fatty acid sensing
title_full_unstemmed FFAR2-FFAR3 receptor heteromerization modulates short-chain fatty acid sensing
title_short FFAR2-FFAR3 receptor heteromerization modulates short-chain fatty acid sensing
title_sort ffar2-ffar3 receptor heteromerization modulates short-chain fatty acid sensing
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5731126/
https://www.ncbi.nlm.nih.gov/pubmed/28883043
http://dx.doi.org/10.1096/fj.201700252RR
work_keys_str_mv AT angzhiwei ffar2ffar3receptorheteromerizationmodulatesshortchainfattyacidsensing
AT xiongding ffar2ffar3receptorheteromerizationmodulatesshortchainfattyacidsensing
AT wumin ffar2ffar3receptorheteromerizationmodulatesshortchainfattyacidsensing
AT dingjeakling ffar2ffar3receptorheteromerizationmodulatesshortchainfattyacidsensing