Cargando…
Forecasting influenza-like illness dynamics for military populations using neural networks and social media
This work is the first to take advantage of recurrent neural networks to predict influenza-like illness (ILI) dynamics from various linguistic signals extracted from social media data. Unlike other approaches that rely on timeseries analysis of historical ILI data and the state-of-the-art machine le...
Autores principales: | Volkova, Svitlana, Ayton, Ellyn, Porterfield, Katherine, Corley, Courtney D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5731746/ https://www.ncbi.nlm.nih.gov/pubmed/29244814 http://dx.doi.org/10.1371/journal.pone.0188941 |
Ejemplares similares
-
Using Web and Social Media for Influenza Surveillance
por: Corley, Courtney D., et al.
Publicado: (2010) -
Forecasting national and regional influenza-like illness for the USA
por: Ben-Nun, Michal, et al.
Publicado: (2019) -
Text and Structural Data Mining of Influenza Mentions in Web and Social Media
por: Corley, Courtney D., et al.
Publicado: (2010) -
Evaluation of mechanistic and statistical methods in forecasting influenza-like illness
por: Kandula, Sasikiran, et al.
Publicado: (2018) -
Aggregating forecasts of multiple respiratory pathogens supports more accurate forecasting of influenza-like illness
por: Pei, Sen, et al.
Publicado: (2020)