Cargando…

Human mitochondrial ribosomes can switch structural tRNAs – but when and why?

High resolution cryoEM of mammalian mitoribosomes revealed the unexpected presence of mitochondrially encoded tRNA as a structural component of mitochondrial large ribosomal subunit (mt-LSU). Our previously published data identified that only mitochondrial (mt-) tRNA(Phe) and mt-tRNA(Val) can be inc...

Descripción completa

Detalles Bibliográficos
Autores principales: Chrzanowska-Lightowlers, Zofia, Rorbach, Joanna, Minczuk, Michal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5731804/
https://www.ncbi.nlm.nih.gov/pubmed/28786741
http://dx.doi.org/10.1080/15476286.2017.1356551
Descripción
Sumario:High resolution cryoEM of mammalian mitoribosomes revealed the unexpected presence of mitochondrially encoded tRNA as a structural component of mitochondrial large ribosomal subunit (mt-LSU). Our previously published data identified that only mitochondrial (mt-) tRNA(Phe) and mt-tRNA(Val) can be incorporated into mammalian mt-LSU and within an organism there is no evidence of tissue specific variation. When mt-tRNA(Val) is limiting, human mitoribosomes can integrate mt-tRNA(Phe) instead to generate a translationally competent monosome. Here we discuss the possible reasons for and consequences of the observed plasticity of the structural mt-tRNA integration. We also indicate potential direction for further research that could help our understanding of the mechanistic and evolutionary aspects of this unprecedented system.