Cargando…

A comprehensive genomic meta-analysis identifies confirmatory role of OBSCN gene in breast tumorigenesis

The giant multifunctional protein “OBSCURIN” is encoded by OBSCN gene and is mostly expressed in cardiac and other skeletal muscles responsible for myofibrils organization. Loss of OBSCURIN affects the entire downstream pathway proteins vital for various cellular functions including cell integration...

Descripción completa

Detalles Bibliográficos
Autores principales: Rajendran, Barani Kumar, Deng, Chu-Xia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5731952/
https://www.ncbi.nlm.nih.gov/pubmed/29254242
http://dx.doi.org/10.18632/oncotarget.20404
Descripción
Sumario:The giant multifunctional protein “OBSCURIN” is encoded by OBSCN gene and is mostly expressed in cardiac and other skeletal muscles responsible for myofibrils organization. Loss of OBSCURIN affects the entire downstream pathway proteins vital for various cellular functions including cell integration and cell adhesion. The OBSCN gene mutations are more frequently observed in various muscular diseases, and cancers. Nevertheless, the direct role of OBSCN in tumorigenesis remains elusive. Interestingly, in clinical breast cancer samples a significant number of function changing mutations have been identified in OBSCN gene. In this study, we identified a significant role of OBSCN by conducting an integrative analysis of copy number alterations, functional mutations, gene methylation and expression data from various BRCA cancer projects data available on cBioPortal and TCGA firebrowse portal. Finally, we carried out genetic network analysis, which revealed that OBSCN gene plays a significant role in GPCR, RAS, p75 or Wnt signaling pathways. Similarly, OBSCN gene interacts with many cancer-associated genes involved in breast tumorigenesis. The OBSCN gene probably regulates breast cancer progression and metastasis and the prognostic molecular signatures such as copy number alterations and gene expression of OBSCN may serve as a tool to identify breast tumorigenesis and metastasis.