Cargando…
Computer-Aided Nodule Assessment and Risk Yield (CANARY) may facilitate non-invasive prediction of EGFR mutation status in lung adenocarcinomas
Computer-Aided Nodule Assessment and Risk Yield (CANARY) is quantitative imaging analysis software that predicts the histopathological classification and post-treatment disease-free survival of patients with adenocarcinoma of the lung. CANARY characterizes nodules by the distribution of nine color-c...
Autores principales: | Clay, Ryan, Kipp, Benjamin R., Jenkins, Sarah, Karwoski, Ron A., Maldonado, Fabien, Rajagopalan, Srinivasan, Voss, Jesse S., Bartholmai, Brian J., Aubry, Marie Christine, Peikert, Tobias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5732170/ https://www.ncbi.nlm.nih.gov/pubmed/29247171 http://dx.doi.org/10.1038/s41598-017-17659-6 |
Ejemplares similares
-
Assessing the inter-observer variability of Computer-Aided Nodule Assessment and Risk Yield (CANARY) to characterize lung adenocarcinomas
por: Nakajima, Erica C., et al.
Publicado: (2018) -
Evaluation of Computer-Aided Nodule Assessment and Risk Yield (CANARY) in Korean patients for prediction of invasiveness of ground-glass opacity nodule
por: Lee, Juyoung, et al.
Publicado: (2021) -
Do we need to see to believe?—radiomics for lung nodule classification and lung cancer risk stratification
por: Khawaja, Ali, et al.
Publicado: (2020) -
Novel high-resolution computed tomography-based radiomic classifier for screen-identified pulmonary nodules in the National Lung Screening Trial
por: Peikert, Tobias, et al.
Publicado: (2018) -
Correction: Novel high-resolution computed tomography-based radiomic classifier for screen-identified pulmonary nodules in the National Lung Screening Trial
por: Peikert, Tobias, et al.
Publicado: (2018)