Cargando…
Enhancer SINEs Link Pol III to Pol II Transcription in Neurons
Spatiotemporal regulation of gene expression depends on the cooperation of multiple mechanisms, including the functional interaction of promoters with distally located enhancers. Here, we show that, in cortical neurons, a subset of short interspersed nuclear elements (SINEs) located in the proximity...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5732322/ https://www.ncbi.nlm.nih.gov/pubmed/29212033 http://dx.doi.org/10.1016/j.celrep.2017.11.019 |
_version_ | 1783286669438353408 |
---|---|
author | Policarpi, Cristina Crepaldi, Luca Brookes, Emily Nitarska, Justyna French, Sarah M. Coatti, Alessandro Riccio, Antonella |
author_facet | Policarpi, Cristina Crepaldi, Luca Brookes, Emily Nitarska, Justyna French, Sarah M. Coatti, Alessandro Riccio, Antonella |
author_sort | Policarpi, Cristina |
collection | PubMed |
description | Spatiotemporal regulation of gene expression depends on the cooperation of multiple mechanisms, including the functional interaction of promoters with distally located enhancers. Here, we show that, in cortical neurons, a subset of short interspersed nuclear elements (SINEs) located in the proximity of activity-regulated genes bears features of enhancers. Enhancer SINEs (eSINEs) recruit the Pol III cofactor complex TFIIIC in a stimulus-dependent manner and are transcribed by Pol III in response to neuronal depolarization. Characterization of an eSINE located in proximity to the Fos gene (Fos(RSINE1)) indicated that the Fos(RSINE1)-encoded transcript interacts with Pol II at the Fos promoter and mediates Fos relocation to Pol II factories, providing an unprecedented molecular link between Pol III and Pol II transcription. Strikingly, knockdown of the Fos(RSINE1) transcript induces defects of both cortical radial migration in vivo and activity-dependent dendritogenesis in vitro, demonstrating that Fos(RSINE1) acts as a strong enhancer of Fos expression in diverse physiological contexts. |
format | Online Article Text |
id | pubmed-5732322 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-57323222017-12-20 Enhancer SINEs Link Pol III to Pol II Transcription in Neurons Policarpi, Cristina Crepaldi, Luca Brookes, Emily Nitarska, Justyna French, Sarah M. Coatti, Alessandro Riccio, Antonella Cell Rep Article Spatiotemporal regulation of gene expression depends on the cooperation of multiple mechanisms, including the functional interaction of promoters with distally located enhancers. Here, we show that, in cortical neurons, a subset of short interspersed nuclear elements (SINEs) located in the proximity of activity-regulated genes bears features of enhancers. Enhancer SINEs (eSINEs) recruit the Pol III cofactor complex TFIIIC in a stimulus-dependent manner and are transcribed by Pol III in response to neuronal depolarization. Characterization of an eSINE located in proximity to the Fos gene (Fos(RSINE1)) indicated that the Fos(RSINE1)-encoded transcript interacts with Pol II at the Fos promoter and mediates Fos relocation to Pol II factories, providing an unprecedented molecular link between Pol III and Pol II transcription. Strikingly, knockdown of the Fos(RSINE1) transcript induces defects of both cortical radial migration in vivo and activity-dependent dendritogenesis in vitro, demonstrating that Fos(RSINE1) acts as a strong enhancer of Fos expression in diverse physiological contexts. Cell Press 2017-12-05 /pmc/articles/PMC5732322/ /pubmed/29212033 http://dx.doi.org/10.1016/j.celrep.2017.11.019 Text en © 2017 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Policarpi, Cristina Crepaldi, Luca Brookes, Emily Nitarska, Justyna French, Sarah M. Coatti, Alessandro Riccio, Antonella Enhancer SINEs Link Pol III to Pol II Transcription in Neurons |
title | Enhancer SINEs Link Pol III to Pol II Transcription in Neurons |
title_full | Enhancer SINEs Link Pol III to Pol II Transcription in Neurons |
title_fullStr | Enhancer SINEs Link Pol III to Pol II Transcription in Neurons |
title_full_unstemmed | Enhancer SINEs Link Pol III to Pol II Transcription in Neurons |
title_short | Enhancer SINEs Link Pol III to Pol II Transcription in Neurons |
title_sort | enhancer sines link pol iii to pol ii transcription in neurons |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5732322/ https://www.ncbi.nlm.nih.gov/pubmed/29212033 http://dx.doi.org/10.1016/j.celrep.2017.11.019 |
work_keys_str_mv | AT policarpicristina enhancersineslinkpoliiitopoliitranscriptioninneurons AT crepaldiluca enhancersineslinkpoliiitopoliitranscriptioninneurons AT brookesemily enhancersineslinkpoliiitopoliitranscriptioninneurons AT nitarskajustyna enhancersineslinkpoliiitopoliitranscriptioninneurons AT frenchsarahm enhancersineslinkpoliiitopoliitranscriptioninneurons AT coattialessandro enhancersineslinkpoliiitopoliitranscriptioninneurons AT riccioantonella enhancersineslinkpoliiitopoliitranscriptioninneurons |