Cargando…
Cluster ensemble based on Random Forests for genetic data
BACKGROUND: Clustering plays a crucial role in several application domains, such as bioinformatics. In bioinformatics, clustering has been extensively used as an approach for detecting interesting patterns in genetic data. One application is population structure analysis, which aims to group individ...
Autores principales: | Alhusain, Luluah, Hafez, Alaaeldin M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5732374/ https://www.ncbi.nlm.nih.gov/pubmed/29270227 http://dx.doi.org/10.1186/s13040-017-0156-2 |
Ejemplares similares
-
Nonparametric approaches for population structure analysis
por: Alhusain, Luluah, et al.
Publicado: (2018) -
The comparison of automated clustering algorithms for resampling representative conformer ensembles with RMSD matrix
por: Kim, Hyoungrae, et al.
Publicado: (2017) -
Block Forests: random forests for blocks of clinical and omics covariate data
por: Hornung, Roman, et al.
Publicado: (2019) -
Clustering based on adherence data
por: Kiwuwa-Muyingo, Sylvia, et al.
Publicado: (2011) -
Building pathway clusters from Random Forests classification using class votes
por: Pang, Herbert, et al.
Publicado: (2008)