Cargando…
Spatial smoothing in Bayesian models: a comparison of weights matrix specifications and their impact on inference
BACKGROUND: When analysing spatial data, it is important to account for spatial autocorrelation. In Bayesian statistics, spatial autocorrelation is commonly modelled by the intrinsic conditional autoregressive prior distribution. At the heart of this model is a spatial weights matrix which controls...
Autores principales: | Duncan, Earl W., White, Nicole M., Mengersen, Kerrie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5732501/ https://www.ncbi.nlm.nih.gov/pubmed/29246157 http://dx.doi.org/10.1186/s12942-017-0120-x |
Ejemplares similares
-
Comparing Bayesian spatial models: Goodness-of-smoothing criteria for assessing under- and over-smoothing
por: Duncan, Earl W., et al.
Publicado: (2020) -
The Impact of Spatial Scales and Spatial Smoothing on the Outcome of Bayesian Spatial Model
por: Kang, Su Yun, et al.
Publicado: (2013) -
Evaluating the effect of neighbourhood weight matrices on smoothing properties of Conditional Autoregressive (CAR) models
por: Earnest, Arul, et al.
Publicado: (2007) -
Development of the Australian Cancer Atlas: spatial modelling, visualisation, and reporting of estimates
por: Duncan, Earl W., et al.
Publicado: (2019) -
Bayesian spatiotemporal modelling for identifying unusual and unstable trends in mammography utilisation
por: Duncan, Earl W, et al.
Publicado: (2016)