Cargando…

Optimizing preventive maintenance policy: A data-driven application for a light rail braking system

This article presents a case study determining the optimal preventive maintenance policy for a light rail rolling stock system in terms of reliability, availability, and maintenance costs. The maintenance policy defines one of the three predefined preventive maintenance actions at fixed time-based i...

Descripción completa

Detalles Bibliográficos
Autores principales: Corman, Francesco, Kraijema, Sander, Godjevac, Milinko, Lodewijks, Gabriel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5732585/
https://www.ncbi.nlm.nih.gov/pubmed/29278245
http://dx.doi.org/10.1177/1748006X17712662
Descripción
Sumario:This article presents a case study determining the optimal preventive maintenance policy for a light rail rolling stock system in terms of reliability, availability, and maintenance costs. The maintenance policy defines one of the three predefined preventive maintenance actions at fixed time-based intervals for each of the subsystems of the braking system. Based on work, maintenance, and failure data, we model the reliability degradation of the system and its subsystems under the current maintenance policy by a Weibull distribution. We then analytically determine the relation between reliability, availability, and maintenance costs. We validate the model against recorded reliability and availability and get further insights by a dedicated sensitivity analysis. The model is then used in a sequential optimization framework determining preventive maintenance intervals to improve on the key performance indicators. We show the potential of data-driven modelling to determine optimal maintenance policy: same system availability and reliability can be achieved with 30% maintenance cost reduction, by prolonging the intervals and re-grouping maintenance actions.