Cargando…
Predicting survival time of lung cancer patients using radiomic analysis
OBJECTIVES: This study investigates the prediction of Non-small cell lung cancer (NSCLC) patient survival outcomes based on radiomic texture and shape features automatically extracted from tumor image data. MATERIALS AND METHODS: Retrospective analysis involves CT scans of 315 NSCLC patients from Th...
Autores principales: | Chaddad, Ahmad, Desrosiers, Christian, Toews, Matthew, Abdulkarim, Bassam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5732814/ https://www.ncbi.nlm.nih.gov/pubmed/29262648 http://dx.doi.org/10.18632/oncotarget.22251 |
Ejemplares similares
-
Integration of Radiomic and Multi-omic Analyses Predicts Survival of Newly Diagnosed IDH1 Wild-Type Glioblastoma
por: Chaddad, Ahmad, et al.
Publicado: (2019) -
Multi-scale radiomic analysis of sub-cortical regions in MRI related to autism, gender and age
por: Chaddad, Ahmad, et al.
Publicado: (2017) -
Multi Texture Analysis of Colorectal Cancer Continuum Using Multispectral Imagery
por: Chaddad, Ahmad, et al.
Publicado: (2016) -
Classifications of Multispectral Colorectal Cancer Tissues Using Convolution Neural Network
por: Haj-Hassan, Hawraa, et al.
Publicado: (2017) -
Hippocampus and amygdala radiomic biomarkers for the study of autism spectrum disorder
por: Chaddad, Ahmad, et al.
Publicado: (2017)