Cargando…

Human glioma stem-like cells induce malignant transformation of bone marrow mesenchymal stem cells by activating TERT expression

We investigated whether glioma stem-like cells (GSCs) malignantly transformed bone marrow mesenchymal stem cells (tBMSCs) in the tumor microenvironment. Transplantation of enhanced green fluorescence protein (EGFP)-labeled BMSCs into irradiated athymic nude mice was followed by intracranial injectio...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Yaodong, Chen, Jinsheng, Dai, Xingliang, Cai, Honghua, Ji, Xiaoyan, Sheng, Yujing, Liu, Hairui, Yang, Lin, Chen, Yanming, Xi, Dengguo, Sheng, Minfeng, Xue, Yanping, Shi, Jia, Liu, Jiachi, Li, Xiaonan, Dong, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5732816/
https://www.ncbi.nlm.nih.gov/pubmed/29262650
http://dx.doi.org/10.18632/oncotarget.22301
Descripción
Sumario:We investigated whether glioma stem-like cells (GSCs) malignantly transformed bone marrow mesenchymal stem cells (tBMSCs) in the tumor microenvironment. Transplantation of enhanced green fluorescence protein (EGFP)-labeled BMSCs into irradiated athymic nude mice was followed by intracranial injection of red fluorescent protein-expressing glioma stem-like cells (SU3-RFP-GSCs). Singly cloned EGFP-BMSCs, harvested from the intracranial tumors showed TERT overexpression, high proliferation, colony formation and invasiveness in Transwell matrigel assays. Transfection of normal BMSCs with TERT (TERT-BMSCs) enhanced proliferation, colony formation and invasiveness, though these characteristics remained lower than in tBMSCs. The tBMSCs and TERT-BMSCs showed high surface expression of CD44, CD105, CD29 and CD90 and an absence of CD31, CD34, CD45, and CD11b, as in normal BMSCs. Alizarin red S and oil red O staining confirmed tBMSCs and TERT-BMSCs transdifferentiated into osteocytes and adipocytes, respectively. When normal BMSCs were indirectly co-cultured in medium from SU3-RFP-GSCs, they exhibited increased growth and proliferation, suggesting paracrine factors from GSCs induced their malignant transformation. Tumorigenicity assays in athymic nude mice showed that transplanted tBMSCs and TERT-BMSCs generated 100% and 20% subcutaneous tumors, respectively, while normal BMSCs generated no tumors. GSCs thus induce malignant transformation of BMSCs by activating TERT expression in BMSCs.