Cargando…

Lysophosphatidylcholine Regulates Sexual Stage Differentiation in the Human Malaria Parasite Plasmodium falciparum

Transmission represents a population bottleneck in the Plasmodium life cycle and a key intervention target of ongoing efforts to eradicate malaria. Sexual differentiation is essential for this process, as only sexual parasites, called gametocytes, are infective to the mosquito vector. Gametocyte pro...

Descripción completa

Detalles Bibliográficos
Autores principales: Brancucci, Nicolas M.B., Gerdt, Joseph P., Wang, ChengQi, De Niz, Mariana, Philip, Nisha, Adapa, Swamy R., Zhang, Min, Hitz, Eva, Niederwieser, Igor, Boltryk, Sylwia D., Laffitte, Marie-Claude, Clark, Martha A., Grüring, Christof, Ravel, Deepali, Blancke Soares, Alexandra, Demas, Allison, Bopp, Selina, Rubio-Ruiz, Belén, Conejo-Garcia, Ana, Wirth, Dyann F., Gendaszewska-Darmach, Edyta, Duraisingh, Manoj T., Adams, John H., Voss, Till S., Waters, Andrew P., Jiang, Rays H.Y., Clardy, Jon, Marti, Matthias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5733390/
https://www.ncbi.nlm.nih.gov/pubmed/29129376
http://dx.doi.org/10.1016/j.cell.2017.10.020
Descripción
Sumario:Transmission represents a population bottleneck in the Plasmodium life cycle and a key intervention target of ongoing efforts to eradicate malaria. Sexual differentiation is essential for this process, as only sexual parasites, called gametocytes, are infective to the mosquito vector. Gametocyte production rates vary depending on environmental conditions, but external stimuli remain obscure. Here, we show that the host-derived lipid lysophosphatidylcholine (LysoPC) controls P. falciparum cell fate by repressing parasite sexual differentiation. We demonstrate that exogenous LysoPC drives biosynthesis of the essential membrane component phosphatidylcholine. LysoPC restriction induces a compensatory response, linking parasite metabolism to the activation of sexual-stage-specific transcription and gametocyte formation. Our results reveal that malaria parasites can sense and process host-derived physiological signals to regulate differentiation. These data close a critical knowledge gap in parasite biology and introduce a major component of the sexual differentiation pathway in Plasmodium that may provide new approaches for blocking malaria transmission.