Cargando…
Improving EEG-Based Motor Imagery Classification for Real-Time Applications Using the QSA Method
We present an improvement to the quaternion-based signal analysis (QSA) technique to extract electroencephalography (EEG) signal features with a view to developing real-time applications, particularly in motor imagery (IM) cognitive processes. The proposed methodology (iQSA, improved QSA) extracts f...
Autores principales: | Batres-Mendoza, Patricia, Ibarra-Manzano, Mario A., Guerra-Hernandez, Erick I., Almanza-Ojeda, Dora L., Montoro-Sanjose, Carlos R., Romero-Troncoso, Rene J., Rostro-Gonzalez, Horacio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5733871/ https://www.ncbi.nlm.nih.gov/pubmed/29348744 http://dx.doi.org/10.1155/2017/9817305 |
Ejemplares similares
-
Quaternion-Based Signal Analysis for Motor Imagery Classification from Electroencephalographic Signals
por: Batres-Mendoza, Patricia, et al.
Publicado: (2016) -
Construction of Classifier Based on MPCA and QSA and Its Application on Classification of Pancreatic Diseases
por: Jiang, Huiyan, et al.
Publicado: (2013) -
Motor Imagery EEG Classification Using Capsule Networks†
por: Ha, Kwon-Woo, et al.
Publicado: (2019) -
EEG oscillatory patterns and classification of sequential compound limb motor imagery
por: Yi, Weibo, et al.
Publicado: (2016) -
Multiclass Posterior Probability Twin SVM for Motor Imagery EEG Classification
por: She, Qingshan, et al.
Publicado: (2015)