Cargando…

EEG Recording and Online Signal Processing on Android: A Multiapp Framework for Brain-Computer Interfaces on Smartphone

OBJECTIVE: Our aim was the development and validation of a modular signal processing and classification application enabling online electroencephalography (EEG) signal processing on off-the-shelf mobile Android devices. The software application SCALA (Signal ProCessing and CLassification on Android)...

Descripción completa

Detalles Bibliográficos
Autores principales: Blum, Sarah, Debener, Stefan, Emkes, Reiner, Volkening, Nils, Fudickar, Sebastian, Bleichner, Martin G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5733949/
https://www.ncbi.nlm.nih.gov/pubmed/29349070
http://dx.doi.org/10.1155/2017/3072870
_version_ 1783286976502300672
author Blum, Sarah
Debener, Stefan
Emkes, Reiner
Volkening, Nils
Fudickar, Sebastian
Bleichner, Martin G.
author_facet Blum, Sarah
Debener, Stefan
Emkes, Reiner
Volkening, Nils
Fudickar, Sebastian
Bleichner, Martin G.
author_sort Blum, Sarah
collection PubMed
description OBJECTIVE: Our aim was the development and validation of a modular signal processing and classification application enabling online electroencephalography (EEG) signal processing on off-the-shelf mobile Android devices. The software application SCALA (Signal ProCessing and CLassification on Android) supports a standardized communication interface to exchange information with external software and hardware. APPROACH: In order to implement a closed-loop brain-computer interface (BCI) on the smartphone, we used a multiapp framework, which integrates applications for stimulus presentation, data acquisition, data processing, classification, and delivery of feedback to the user. MAIN RESULTS: We have implemented the open source signal processing application SCALA. We present timing test results supporting sufficient temporal precision of audio events. We also validate SCALA with a well-established auditory selective attention paradigm and report above chance level classification results for all participants. Regarding the 24-channel EEG signal quality, evaluation results confirm typical sound onset auditory evoked potentials as well as cognitive event-related potentials that differentiate between correct and incorrect task performance feedback. SIGNIFICANCE: We present a fully smartphone-operated, modular closed-loop BCI system that can be combined with different EEG amplifiers and can easily implement other paradigms.
format Online
Article
Text
id pubmed-5733949
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-57339492018-01-18 EEG Recording and Online Signal Processing on Android: A Multiapp Framework for Brain-Computer Interfaces on Smartphone Blum, Sarah Debener, Stefan Emkes, Reiner Volkening, Nils Fudickar, Sebastian Bleichner, Martin G. Biomed Res Int Research Article OBJECTIVE: Our aim was the development and validation of a modular signal processing and classification application enabling online electroencephalography (EEG) signal processing on off-the-shelf mobile Android devices. The software application SCALA (Signal ProCessing and CLassification on Android) supports a standardized communication interface to exchange information with external software and hardware. APPROACH: In order to implement a closed-loop brain-computer interface (BCI) on the smartphone, we used a multiapp framework, which integrates applications for stimulus presentation, data acquisition, data processing, classification, and delivery of feedback to the user. MAIN RESULTS: We have implemented the open source signal processing application SCALA. We present timing test results supporting sufficient temporal precision of audio events. We also validate SCALA with a well-established auditory selective attention paradigm and report above chance level classification results for all participants. Regarding the 24-channel EEG signal quality, evaluation results confirm typical sound onset auditory evoked potentials as well as cognitive event-related potentials that differentiate between correct and incorrect task performance feedback. SIGNIFICANCE: We present a fully smartphone-operated, modular closed-loop BCI system that can be combined with different EEG amplifiers and can easily implement other paradigms. Hindawi 2017 2017-11-16 /pmc/articles/PMC5733949/ /pubmed/29349070 http://dx.doi.org/10.1155/2017/3072870 Text en Copyright © 2017 Sarah Blum et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Blum, Sarah
Debener, Stefan
Emkes, Reiner
Volkening, Nils
Fudickar, Sebastian
Bleichner, Martin G.
EEG Recording and Online Signal Processing on Android: A Multiapp Framework for Brain-Computer Interfaces on Smartphone
title EEG Recording and Online Signal Processing on Android: A Multiapp Framework for Brain-Computer Interfaces on Smartphone
title_full EEG Recording and Online Signal Processing on Android: A Multiapp Framework for Brain-Computer Interfaces on Smartphone
title_fullStr EEG Recording and Online Signal Processing on Android: A Multiapp Framework for Brain-Computer Interfaces on Smartphone
title_full_unstemmed EEG Recording and Online Signal Processing on Android: A Multiapp Framework for Brain-Computer Interfaces on Smartphone
title_short EEG Recording and Online Signal Processing on Android: A Multiapp Framework for Brain-Computer Interfaces on Smartphone
title_sort eeg recording and online signal processing on android: a multiapp framework for brain-computer interfaces on smartphone
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5733949/
https://www.ncbi.nlm.nih.gov/pubmed/29349070
http://dx.doi.org/10.1155/2017/3072870
work_keys_str_mv AT blumsarah eegrecordingandonlinesignalprocessingonandroidamultiappframeworkforbraincomputerinterfacesonsmartphone
AT debenerstefan eegrecordingandonlinesignalprocessingonandroidamultiappframeworkforbraincomputerinterfacesonsmartphone
AT emkesreiner eegrecordingandonlinesignalprocessingonandroidamultiappframeworkforbraincomputerinterfacesonsmartphone
AT volkeningnils eegrecordingandonlinesignalprocessingonandroidamultiappframeworkforbraincomputerinterfacesonsmartphone
AT fudickarsebastian eegrecordingandonlinesignalprocessingonandroidamultiappframeworkforbraincomputerinterfacesonsmartphone
AT bleichnermarting eegrecordingandonlinesignalprocessingonandroidamultiappframeworkforbraincomputerinterfacesonsmartphone