Cargando…

OPUS‐CSF: A C‐atom‐based scoring function for ranking protein structural models

We report a C‐atom‐based scoring function, named OPUS‐CSF, for ranking protein structural models. Rather than using traditional Boltzmann formula, we built a scoring function (CSF score) based on the native distributions (derived from the entire PDB) of coordinate components of mainchain C (carbonyl...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Gang, Ma, Tianqi, Zang, Tianwu, Wang, Qinghua, Ma, Jianpeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5734313/
https://www.ncbi.nlm.nih.gov/pubmed/29047165
http://dx.doi.org/10.1002/pro.3327
Descripción
Sumario:We report a C‐atom‐based scoring function, named OPUS‐CSF, for ranking protein structural models. Rather than using traditional Boltzmann formula, we built a scoring function (CSF score) based on the native distributions (derived from the entire PDB) of coordinate components of mainchain C (carbonyl) atoms on selected residues of peptide segments of 5, 7, 9, and 11 residues in length. In testing OPUS‐CSF on decoy recognition, it maximally recognized 257 native structures out of 278 targets in 11 commonly used decoy sets, significantly outperforming other popular all‐atom empirical potentials. The average correlation coefficient with TM‐score was also comparable with those of other potentials. OPUS‐CSF is a highly coarse‐grained scoring function, which only requires input of partial mainchain information, and very fast. Thus, it is suitable for applications at early stage of structural building.