Cargando…
A novel mode of cytokinesis without cell-substratum adhesion
Cytokinesis is a final step in cell division. Dictyostelium cells, a model organism for the study of cytokinesis, have multiple modes, denoted cytokinesis A, B, C, and D. All these modes have been mainly investigated using cells adhering to the substratum although they can grow in shaking suspension...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5735089/ https://www.ncbi.nlm.nih.gov/pubmed/29255156 http://dx.doi.org/10.1038/s41598-017-17477-w |
_version_ | 1783287131303575552 |
---|---|
author | Taira, Risa Yumura, Shigehiko |
author_facet | Taira, Risa Yumura, Shigehiko |
author_sort | Taira, Risa |
collection | PubMed |
description | Cytokinesis is a final step in cell division. Dictyostelium cells, a model organism for the study of cytokinesis, have multiple modes, denoted cytokinesis A, B, C, and D. All these modes have been mainly investigated using cells adhering to the substratum although they can grow in shaking suspension culture. Here, we observed how cells divide without adhering to the substratum using a new non-adhesive material. These detached cells formed the cleavage furrow but eventually failed in the final abscission. Thus, the cells cannot divide without adhesion, suggesting that they cannot divide only through the conventional cytokinesis A. However, in a long-term culture, the detached cells adhered each other to form multicellular aggregates and divided properly in these aggregates. Myosin II-null cells also formed such aggregates but could not divide in the aggregates. Several lines of experiments using mutant cells showed that the process of cytokinesis in multicellular aggregates is a novel mode utilizing a confined space in the aggregate in a myosin II-dependent manner. These results shed light on a poorly characterized mechanism of cytokinesis in multicellular spheroids or tissues. We propose to redefine and classify multiple modes of cytokinesis. |
format | Online Article Text |
id | pubmed-5735089 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-57350892017-12-21 A novel mode of cytokinesis without cell-substratum adhesion Taira, Risa Yumura, Shigehiko Sci Rep Article Cytokinesis is a final step in cell division. Dictyostelium cells, a model organism for the study of cytokinesis, have multiple modes, denoted cytokinesis A, B, C, and D. All these modes have been mainly investigated using cells adhering to the substratum although they can grow in shaking suspension culture. Here, we observed how cells divide without adhering to the substratum using a new non-adhesive material. These detached cells formed the cleavage furrow but eventually failed in the final abscission. Thus, the cells cannot divide without adhesion, suggesting that they cannot divide only through the conventional cytokinesis A. However, in a long-term culture, the detached cells adhered each other to form multicellular aggregates and divided properly in these aggregates. Myosin II-null cells also formed such aggregates but could not divide in the aggregates. Several lines of experiments using mutant cells showed that the process of cytokinesis in multicellular aggregates is a novel mode utilizing a confined space in the aggregate in a myosin II-dependent manner. These results shed light on a poorly characterized mechanism of cytokinesis in multicellular spheroids or tissues. We propose to redefine and classify multiple modes of cytokinesis. Nature Publishing Group UK 2017-12-18 /pmc/articles/PMC5735089/ /pubmed/29255156 http://dx.doi.org/10.1038/s41598-017-17477-w Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Taira, Risa Yumura, Shigehiko A novel mode of cytokinesis without cell-substratum adhesion |
title | A novel mode of cytokinesis without cell-substratum adhesion |
title_full | A novel mode of cytokinesis without cell-substratum adhesion |
title_fullStr | A novel mode of cytokinesis without cell-substratum adhesion |
title_full_unstemmed | A novel mode of cytokinesis without cell-substratum adhesion |
title_short | A novel mode of cytokinesis without cell-substratum adhesion |
title_sort | novel mode of cytokinesis without cell-substratum adhesion |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5735089/ https://www.ncbi.nlm.nih.gov/pubmed/29255156 http://dx.doi.org/10.1038/s41598-017-17477-w |
work_keys_str_mv | AT tairarisa anovelmodeofcytokinesiswithoutcellsubstratumadhesion AT yumurashigehiko anovelmodeofcytokinesiswithoutcellsubstratumadhesion AT tairarisa novelmodeofcytokinesiswithoutcellsubstratumadhesion AT yumurashigehiko novelmodeofcytokinesiswithoutcellsubstratumadhesion |