Cargando…
iDTI-ESBoost: Identification of Drug Target Interaction Using Evolutionary and Structural Features with Boosting
Prediction of new drug-target interactions is critically important as it can lead the researchers to find new uses for old drugs and to disclose their therapeutic profiles or side effects. However, experimental prediction of drug-target interactions is expensive and time-consuming. As a result, comp...
Autores principales: | Rayhan, Farshid, Ahmed, Sajid, Shatabda, Swakkhar, Farid, Dewan Md, Mousavian, Zaynab, Dehzangi, Abdollah, Rahman, M. Sohel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5735173/ https://www.ncbi.nlm.nih.gov/pubmed/29255285 http://dx.doi.org/10.1038/s41598-017-18025-2 |
Ejemplares similares
-
FRnet-DTI: Deep convolutional neural network for drug-target interaction prediction
por: Rayhan, Farshid, et al.
Publicado: (2020) -
The ionic DTI model (iDTI) of dynamic diffusion tensor imaging (dDTI)
por: Makris, Nikos, et al.
Publicado: (2014) -
iDNAProt-ES: Identification of DNA-binding Proteins Using Evolutionary and Structural Features
por: Chowdhury, Shahana Yasmin, et al.
Publicado: (2017) -
Accurately Predicting Glutarylation Sites Using Sequential Bi-Peptide-Based Evolutionary Features
por: Arafat, Md. Easin, et al.
Publicado: (2020) -
Accurate prediction of RNA 5-hydroxymethylcytosine modification by utilizing novel position-specific gapped k-mer descriptors
por: Ahmed, Sajid, et al.
Publicado: (2020)