Cargando…

Genome-Wide Analysis of mRNA and Long Noncoding RNA Profiles in Chronic Actinic Dermatitis

Chronic actinic dermatitis (CAD), a photosensitive dermatosis, is characterized by inflammatory lesions, especially on sun-exposed skin. However, its pathogenesis remains unclear. In this study, second-generation RNA sequencing and comprehensive bioinformatics analyses of mRNAs and long noncoding RN...

Descripción completa

Detalles Bibliográficos
Autores principales: Lei, Dongyun, Lv, Lechun, Yang, Li, Wu, Wenjuan, Liu, Yong, Tu, Ying, Xu, Dan, Jin, Yumei, Nong, Xiang, He, Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5735319/
https://www.ncbi.nlm.nih.gov/pubmed/29359156
http://dx.doi.org/10.1155/2017/7479523
Descripción
Sumario:Chronic actinic dermatitis (CAD), a photosensitive dermatosis, is characterized by inflammatory lesions, especially on sun-exposed skin. However, its pathogenesis remains unclear. In this study, second-generation RNA sequencing and comprehensive bioinformatics analyses of mRNAs and long noncoding RNAs (lncRNAs) were performed to determine the transcriptome profiles of patients with CAD. A total 6889 annotated lncRNAs, 341 novel lncRNAs, and 65091 mRNAs were identified. Interestingly, patients with CAD and healthy controls showed distinct transcriptome profiles. Indeed, 198 annotated (81.48%) and 45 novel (18.52%) lncRNAs were differentially expressed between the two groups. GO, KEGG, and RGSEA analyses of lncRNAs showed that inflammatory and immune response related pathways played crucial roles in the pathogenetic mechanism of CAD. In addition, we unveiled key differentially expressed lncRNAs, including lncRNA RP11-356I2.4 which plays a role probably by regulating TNFAIP3 and inflammation. qRT-PCR data validated the differentially expressed genes. The newly identified lncRNAs may have potential roles in the development of CAD; these findings lay a solid foundation for subsequent functional exploration of lncRNAs and mRNAs as therapeutic targets for CAD.