Cargando…
Sparsifying machine learning models identify stable subsets of predictive features for behavioral detection of autism
BACKGROUND: Autism spectrum disorder (ASD) diagnosis can be delayed due in part to the time required for administration of standard exams, such as the Autism Diagnostic Observation Schedule (ADOS). Shorter and potentially mobilized approaches would help to alleviate bottlenecks in the healthcare sys...
Autores principales: | Levy, Sebastien, Duda, Marlena, Haber, Nick, Wall, Dennis P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5735531/ https://www.ncbi.nlm.nih.gov/pubmed/29270283 http://dx.doi.org/10.1186/s13229-017-0180-6 |
Ejemplares similares
-
On cheap entropy-sparsified regression learning
por: Horenko, Illia, et al.
Publicado: (2022) -
Use of machine learning for behavioral distinction of autism and ADHD
por: Duda, M, et al.
Publicado: (2016) -
Sparsifying priors for Bayesian uncertainty quantification in model discovery
por: Hirsh, Seth M., et al.
Publicado: (2022) -
Searching for a minimal set of behaviors for autism detection through feature selection-based machine learning
por: Kosmicki, J A, et al.
Publicado: (2015) -
Crowdsourced validation of a machine-learning classification system for autism and ADHD
por: Duda, M, et al.
Publicado: (2017)