Cargando…
Sparse generalized linear model with L(0) approximation for feature selection and prediction with big omics data
BACKGROUND: Feature selection and prediction are the most important tasks for big data mining. The common strategies for feature selection in big data mining are L (1), SCAD and MC+. However, none of the existing algorithms optimizes L (0), which penalizes the number of nonzero features directly. RE...
Autores principales: | Liu, Zhenqiu, Sun, Fengzhu, McGovern, Dermot P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5735537/ https://www.ncbi.nlm.nih.gov/pubmed/29270229 http://dx.doi.org/10.1186/s13040-017-0159-z |
Ejemplares similares
-
Sparse reduced-rank regression for integrating omics data
por: Hilafu, Haileab, et al.
Publicado: (2020) -
Efficient Feature Selection and Multiclass Classification with Integrated Instance and Model Based Learning
por: Liu, Zhenqiu, et al.
Publicado: (2012) -
Statistical significance approximation for local similarity analysis of dependent time series data
por: Zhang, Fang, et al.
Publicado: (2019) -
Regularized F-Measure Maximization for Feature Selection and Classification
por: Liu, Zhenqiu, et al.
Publicado: (2009) -
Joint analysis of multiple high-dimensional data types using sparse matrix approximations of rank-1 with applications to ovarian and liver cancer
por: Okimoto, Gordon, et al.
Publicado: (2016)