Cargando…

Exercise Combined with Rhodiola sacra Supplementation Improves Exercise Capacity and Ameliorates Exhaustive Exercise-Induced Muscle Damage through Enhancement of Mitochondrial Quality Control

Mounting evidence has firmly established that increased exercise capacity (EC) is associated with considerable improvements in the survival of patients with cardiovascular disease (CVD) and that antistress capacity is a prognostic predictor of adverse cardiovascular events in patients with CVD. Prev...

Descripción completa

Detalles Bibliográficos
Autores principales: Dun, Yaoshan, Liu, Suixin, Zhang, Wenliang, Xie, Murong, Qiu, Ling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5735688/
https://www.ncbi.nlm.nih.gov/pubmed/29359009
http://dx.doi.org/10.1155/2017/8024857
Descripción
Sumario:Mounting evidence has firmly established that increased exercise capacity (EC) is associated with considerable improvements in the survival of patients with cardiovascular disease (CVD) and that antistress capacity is a prognostic predictor of adverse cardiovascular events in patients with CVD. Previous studies have indicated that aerobic exercise (AE) and supplementation with Rhodiola sacra (RS), a natural plant pharmaceutical, improve EC and enable resistance to stress; however, the underlying mechanism remains unclear. This study explored the ability of AE and RS, alone or combined, to improve EC and ameliorate exhaustive exercise- (EE-) induced stress and elucidate the mechanism involved. We found that AE and RS significantly increased EC in mice and ameliorated EE-induced stress damage in skeletal and cardiac muscles (SCM); furthermore, a synergistic effect was detected for the first time. To our knowledge, the present work is the first to report that AE and RS activate mitophagy, mitochondrial dynamics, and biogenesis in SCM, both in the resting state and after EE. These data indicate that AE and RS synergistically improve EC in mice and protect SCM from EE-induced stress by enhancing mitochondrial quality control, including the activation of mitophagy, mitochondrial dynamics, and biogenesis, both at rest and after EE.