Cargando…
Exercise Combined with Rhodiola sacra Supplementation Improves Exercise Capacity and Ameliorates Exhaustive Exercise-Induced Muscle Damage through Enhancement of Mitochondrial Quality Control
Mounting evidence has firmly established that increased exercise capacity (EC) is associated with considerable improvements in the survival of patients with cardiovascular disease (CVD) and that antistress capacity is a prognostic predictor of adverse cardiovascular events in patients with CVD. Prev...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5735688/ https://www.ncbi.nlm.nih.gov/pubmed/29359009 http://dx.doi.org/10.1155/2017/8024857 |
_version_ | 1783287261744332800 |
---|---|
author | Dun, Yaoshan Liu, Suixin Zhang, Wenliang Xie, Murong Qiu, Ling |
author_facet | Dun, Yaoshan Liu, Suixin Zhang, Wenliang Xie, Murong Qiu, Ling |
author_sort | Dun, Yaoshan |
collection | PubMed |
description | Mounting evidence has firmly established that increased exercise capacity (EC) is associated with considerable improvements in the survival of patients with cardiovascular disease (CVD) and that antistress capacity is a prognostic predictor of adverse cardiovascular events in patients with CVD. Previous studies have indicated that aerobic exercise (AE) and supplementation with Rhodiola sacra (RS), a natural plant pharmaceutical, improve EC and enable resistance to stress; however, the underlying mechanism remains unclear. This study explored the ability of AE and RS, alone or combined, to improve EC and ameliorate exhaustive exercise- (EE-) induced stress and elucidate the mechanism involved. We found that AE and RS significantly increased EC in mice and ameliorated EE-induced stress damage in skeletal and cardiac muscles (SCM); furthermore, a synergistic effect was detected for the first time. To our knowledge, the present work is the first to report that AE and RS activate mitophagy, mitochondrial dynamics, and biogenesis in SCM, both in the resting state and after EE. These data indicate that AE and RS synergistically improve EC in mice and protect SCM from EE-induced stress by enhancing mitochondrial quality control, including the activation of mitophagy, mitochondrial dynamics, and biogenesis, both at rest and after EE. |
format | Online Article Text |
id | pubmed-5735688 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-57356882018-01-22 Exercise Combined with Rhodiola sacra Supplementation Improves Exercise Capacity and Ameliorates Exhaustive Exercise-Induced Muscle Damage through Enhancement of Mitochondrial Quality Control Dun, Yaoshan Liu, Suixin Zhang, Wenliang Xie, Murong Qiu, Ling Oxid Med Cell Longev Research Article Mounting evidence has firmly established that increased exercise capacity (EC) is associated with considerable improvements in the survival of patients with cardiovascular disease (CVD) and that antistress capacity is a prognostic predictor of adverse cardiovascular events in patients with CVD. Previous studies have indicated that aerobic exercise (AE) and supplementation with Rhodiola sacra (RS), a natural plant pharmaceutical, improve EC and enable resistance to stress; however, the underlying mechanism remains unclear. This study explored the ability of AE and RS, alone or combined, to improve EC and ameliorate exhaustive exercise- (EE-) induced stress and elucidate the mechanism involved. We found that AE and RS significantly increased EC in mice and ameliorated EE-induced stress damage in skeletal and cardiac muscles (SCM); furthermore, a synergistic effect was detected for the first time. To our knowledge, the present work is the first to report that AE and RS activate mitophagy, mitochondrial dynamics, and biogenesis in SCM, both in the resting state and after EE. These data indicate that AE and RS synergistically improve EC in mice and protect SCM from EE-induced stress by enhancing mitochondrial quality control, including the activation of mitophagy, mitochondrial dynamics, and biogenesis, both at rest and after EE. Hindawi 2017 2017-11-22 /pmc/articles/PMC5735688/ /pubmed/29359009 http://dx.doi.org/10.1155/2017/8024857 Text en Copyright © 2017 Yaoshan Dun et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Dun, Yaoshan Liu, Suixin Zhang, Wenliang Xie, Murong Qiu, Ling Exercise Combined with Rhodiola sacra Supplementation Improves Exercise Capacity and Ameliorates Exhaustive Exercise-Induced Muscle Damage through Enhancement of Mitochondrial Quality Control |
title | Exercise Combined with Rhodiola sacra Supplementation Improves Exercise Capacity and Ameliorates Exhaustive Exercise-Induced Muscle Damage through Enhancement of Mitochondrial Quality Control |
title_full | Exercise Combined with Rhodiola sacra Supplementation Improves Exercise Capacity and Ameliorates Exhaustive Exercise-Induced Muscle Damage through Enhancement of Mitochondrial Quality Control |
title_fullStr | Exercise Combined with Rhodiola sacra Supplementation Improves Exercise Capacity and Ameliorates Exhaustive Exercise-Induced Muscle Damage through Enhancement of Mitochondrial Quality Control |
title_full_unstemmed | Exercise Combined with Rhodiola sacra Supplementation Improves Exercise Capacity and Ameliorates Exhaustive Exercise-Induced Muscle Damage through Enhancement of Mitochondrial Quality Control |
title_short | Exercise Combined with Rhodiola sacra Supplementation Improves Exercise Capacity and Ameliorates Exhaustive Exercise-Induced Muscle Damage through Enhancement of Mitochondrial Quality Control |
title_sort | exercise combined with rhodiola sacra supplementation improves exercise capacity and ameliorates exhaustive exercise-induced muscle damage through enhancement of mitochondrial quality control |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5735688/ https://www.ncbi.nlm.nih.gov/pubmed/29359009 http://dx.doi.org/10.1155/2017/8024857 |
work_keys_str_mv | AT dunyaoshan exercisecombinedwithrhodiolasacrasupplementationimprovesexercisecapacityandamelioratesexhaustiveexerciseinducedmuscledamagethroughenhancementofmitochondrialqualitycontrol AT liusuixin exercisecombinedwithrhodiolasacrasupplementationimprovesexercisecapacityandamelioratesexhaustiveexerciseinducedmuscledamagethroughenhancementofmitochondrialqualitycontrol AT zhangwenliang exercisecombinedwithrhodiolasacrasupplementationimprovesexercisecapacityandamelioratesexhaustiveexerciseinducedmuscledamagethroughenhancementofmitochondrialqualitycontrol AT xiemurong exercisecombinedwithrhodiolasacrasupplementationimprovesexercisecapacityandamelioratesexhaustiveexerciseinducedmuscledamagethroughenhancementofmitochondrialqualitycontrol AT qiuling exercisecombinedwithrhodiolasacrasupplementationimprovesexercisecapacityandamelioratesexhaustiveexerciseinducedmuscledamagethroughenhancementofmitochondrialqualitycontrol |