Cargando…
Multiple imputation using linked proxy outcome data resulted in important bias reduction and efficiency gains: a simulation study
BACKGROUND: When an outcome variable is missing not at random (MNAR: probability of missingness depends on outcome values), estimates of the effect of an exposure on this outcome are often biased. We investigated the extent of this bias and examined whether the bias can be reduced through incorporat...
Autores principales: | Cornish, R. P., Macleod, J., Carpenter, J. R., Tilling, K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5735815/ https://www.ncbi.nlm.nih.gov/pubmed/29270206 http://dx.doi.org/10.1186/s12982-017-0068-0 |
Ejemplares similares
-
Multiple imputation of missing data under missing at random: including a collider as an auxiliary variable in the imputation model can induce bias
por: Curnow, Elinor, et al.
Publicado: (2023) -
Appropriate inclusion of interactions was needed to avoid bias in multiple imputation
por: Tilling, Kate, et al.
Publicado: (2016) -
Multiple imputation with missing indicators as proxies for unmeasured variables: simulation study
por: Sperrin, Matthew, et al.
Publicado: (2020) -
Using linked educational attainment data to reduce bias due to missing outcome data in estimates of the association between the duration of breastfeeding and IQ at 15 years
por: Cornish, Rosie P, et al.
Publicado: (2015) -
Quick, “Imputation-free” meta-analysis with proxy-SNPs
por: Meesters, Christian, et al.
Publicado: (2012)