Cargando…
Comparative transcriptome analysis of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) reveals novel insights into heat stress tolerance in insects
BACKGROUND: Heat tolerance is a key parameter that affects insect distribution and abundance. Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) is a devastating pest of mulberry in the main mulberry-growing regions and can cause tremendous losses to sericulture by directly feeding on mulberry leave...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5735938/ https://www.ncbi.nlm.nih.gov/pubmed/29258441 http://dx.doi.org/10.1186/s12864-017-4355-5 |
_version_ | 1783287298158231552 |
---|---|
author | Liu, Yuncai Su, Hang Li, Rongqiao Li, Xiaotong Xu, Yusong Dai, Xiangping Zhou, Yanyan Wang, Huabing |
author_facet | Liu, Yuncai Su, Hang Li, Rongqiao Li, Xiaotong Xu, Yusong Dai, Xiangping Zhou, Yanyan Wang, Huabing |
author_sort | Liu, Yuncai |
collection | PubMed |
description | BACKGROUND: Heat tolerance is a key parameter that affects insect distribution and abundance. Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) is a devastating pest of mulberry in the main mulberry-growing regions and can cause tremendous losses to sericulture by directly feeding on mulberry leaves and transmitting viruses to Bombyx mori. Moreover, G. pyloalis shows a prominent capacity for adaptation to daily and seasonal temperature fluctuations and can survive several hours under high temperature. To date, the molecular mechanism underlying the outstanding adaptability of this pest to high temperature remains unclear. RESULTS: In this study, we performed comparative transcriptome analyses on G. pyloalis exposed to 25 and 40 °C for 4 h. We obtained 34,034 unigenes and identified 1275 and 1222 genes significantly upregulated or downregulated, respectively, by heat stress. Data from the transcriptome analyses indicated that some processes involved in heat tolerance are conserved, such as high expression of heat shock protein (HSP) genes and partial repression of metabolism progress. In addition, vitamin digestion and absorption pathways and detoxification pathways identified here provided new insights for the investigation of the molecular mechanisms of heat stress tolerance. Furthermore, transcriptome analysis indicated that immune and phosphatidylinositol signaling system have a close relationship with heat tolerance. In addition, the expression patterns of ten randomly selected genes, such as HSP and cytochrome P450, were consistent with the transcriptome results obtained through quantitative real-time PCR. CONCLUSIONS: Comparisons among transcriptome results revealed the upregulation of HSPs and genes involved in redox homeostasis, detoxication, and immune progress. However, many metabolism progresses, such as glycolysis/gluconeogenesis and fatty acid biosynthesis, were partially repressed. The results reflected that the heat tolerance of G. pyloalis is a fairly complicated process and related to a broad range of physiological regulations. Our study can improve understanding on the mechanisms of insect thermal tolerance. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12864-017-4355-5) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5735938 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-57359382017-12-21 Comparative transcriptome analysis of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) reveals novel insights into heat stress tolerance in insects Liu, Yuncai Su, Hang Li, Rongqiao Li, Xiaotong Xu, Yusong Dai, Xiangping Zhou, Yanyan Wang, Huabing BMC Genomics Research Article BACKGROUND: Heat tolerance is a key parameter that affects insect distribution and abundance. Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) is a devastating pest of mulberry in the main mulberry-growing regions and can cause tremendous losses to sericulture by directly feeding on mulberry leaves and transmitting viruses to Bombyx mori. Moreover, G. pyloalis shows a prominent capacity for adaptation to daily and seasonal temperature fluctuations and can survive several hours under high temperature. To date, the molecular mechanism underlying the outstanding adaptability of this pest to high temperature remains unclear. RESULTS: In this study, we performed comparative transcriptome analyses on G. pyloalis exposed to 25 and 40 °C for 4 h. We obtained 34,034 unigenes and identified 1275 and 1222 genes significantly upregulated or downregulated, respectively, by heat stress. Data from the transcriptome analyses indicated that some processes involved in heat tolerance are conserved, such as high expression of heat shock protein (HSP) genes and partial repression of metabolism progress. In addition, vitamin digestion and absorption pathways and detoxification pathways identified here provided new insights for the investigation of the molecular mechanisms of heat stress tolerance. Furthermore, transcriptome analysis indicated that immune and phosphatidylinositol signaling system have a close relationship with heat tolerance. In addition, the expression patterns of ten randomly selected genes, such as HSP and cytochrome P450, were consistent with the transcriptome results obtained through quantitative real-time PCR. CONCLUSIONS: Comparisons among transcriptome results revealed the upregulation of HSPs and genes involved in redox homeostasis, detoxication, and immune progress. However, many metabolism progresses, such as glycolysis/gluconeogenesis and fatty acid biosynthesis, were partially repressed. The results reflected that the heat tolerance of G. pyloalis is a fairly complicated process and related to a broad range of physiological regulations. Our study can improve understanding on the mechanisms of insect thermal tolerance. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12864-017-4355-5) contains supplementary material, which is available to authorized users. BioMed Central 2017-12-19 /pmc/articles/PMC5735938/ /pubmed/29258441 http://dx.doi.org/10.1186/s12864-017-4355-5 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Liu, Yuncai Su, Hang Li, Rongqiao Li, Xiaotong Xu, Yusong Dai, Xiangping Zhou, Yanyan Wang, Huabing Comparative transcriptome analysis of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) reveals novel insights into heat stress tolerance in insects |
title | Comparative transcriptome analysis of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) reveals novel insights into heat stress tolerance in insects |
title_full | Comparative transcriptome analysis of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) reveals novel insights into heat stress tolerance in insects |
title_fullStr | Comparative transcriptome analysis of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) reveals novel insights into heat stress tolerance in insects |
title_full_unstemmed | Comparative transcriptome analysis of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) reveals novel insights into heat stress tolerance in insects |
title_short | Comparative transcriptome analysis of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) reveals novel insights into heat stress tolerance in insects |
title_sort | comparative transcriptome analysis of glyphodes pyloalis walker (lepidoptera: pyralidae) reveals novel insights into heat stress tolerance in insects |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5735938/ https://www.ncbi.nlm.nih.gov/pubmed/29258441 http://dx.doi.org/10.1186/s12864-017-4355-5 |
work_keys_str_mv | AT liuyuncai comparativetranscriptomeanalysisofglyphodespyloaliswalkerlepidopterapyralidaerevealsnovelinsightsintoheatstresstoleranceininsects AT suhang comparativetranscriptomeanalysisofglyphodespyloaliswalkerlepidopterapyralidaerevealsnovelinsightsintoheatstresstoleranceininsects AT lirongqiao comparativetranscriptomeanalysisofglyphodespyloaliswalkerlepidopterapyralidaerevealsnovelinsightsintoheatstresstoleranceininsects AT lixiaotong comparativetranscriptomeanalysisofglyphodespyloaliswalkerlepidopterapyralidaerevealsnovelinsightsintoheatstresstoleranceininsects AT xuyusong comparativetranscriptomeanalysisofglyphodespyloaliswalkerlepidopterapyralidaerevealsnovelinsightsintoheatstresstoleranceininsects AT daixiangping comparativetranscriptomeanalysisofglyphodespyloaliswalkerlepidopterapyralidaerevealsnovelinsightsintoheatstresstoleranceininsects AT zhouyanyan comparativetranscriptomeanalysisofglyphodespyloaliswalkerlepidopterapyralidaerevealsnovelinsightsintoheatstresstoleranceininsects AT wanghuabing comparativetranscriptomeanalysisofglyphodespyloaliswalkerlepidopterapyralidaerevealsnovelinsightsintoheatstresstoleranceininsects |