Cargando…
A biological network-based regularized artificial neural network model for robust phenotype prediction from gene expression data
BACKGROUND: Stratification of patient subpopulations that respond favorably to treatment or experience and adverse reaction is an essential step toward development of new personalized therapies and diagnostics. It is currently feasible to generate omic-scale biological measurements for all patients...
Autores principales: | Kang, Tianyu, Ding, Wei, Zhang, Luoyan, Ziemek, Daniel, Zarringhalam, Kourosh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5735940/ https://www.ncbi.nlm.nih.gov/pubmed/29258445 http://dx.doi.org/10.1186/s12859-017-1984-2 |
Ejemplares similares
-
Robust phenotype prediction from gene expression data using differential shrinkage of co-regulated genes
por: Zarringhalam, Kourosh, et al.
Publicado: (2018) -
Robust clinical outcome prediction based on Bayesian analysis of transcriptional profiles and prior causal networks
por: Zarringhalam, Kourosh, et al.
Publicado: (2014) -
Interpreting transcriptional changes using causal graphs: new methods and their practical utility on public networks
por: Fakhry, Carl Tony, et al.
Publicado: (2016) -
Prediction of hierarchical time series using structured regularization and its application to artificial neural networks
por: Shiratori, Tomokaze, et al.
Publicado: (2020) -
A Unifying Mathematical Framework for Genetic Robustness, Environmental Robustness, Network Robustness and their Tradeoff on Phenotype Robustness in Biological Networks Part II: Ecological Networks
por: Chen, Bor-Sen, et al.
Publicado: (2013)