Cargando…
Maternal age generates phenotypic variation in C. elegans
Genetically identical individuals growing in the same environment often show substantial phenotypic variation within populations of organisms as diverse as bacteria1, nematodes2, rodents3 and humans4. With some exceptions5, the causes are poorly understood. We show here that isogenic Caenorhabditis...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5736127/ https://www.ncbi.nlm.nih.gov/pubmed/29186117 http://dx.doi.org/10.1038/nature25012 |
Sumario: | Genetically identical individuals growing in the same environment often show substantial phenotypic variation within populations of organisms as diverse as bacteria1, nematodes2, rodents3 and humans4. With some exceptions5, the causes are poorly understood. We show here that isogenic Caenorhabditis elegans nematodes vary in their size at hatching, speed of development, growth rate, starvation resistance, fecundity, and also in the rate of development of their germline relative to that of somatic tissues. Surprisingly, we show that the primary cause of this variation is the age of an individual’s mother, with young mothers producing progeny impaired for many traits. We identify age-dependent changes in maternal provisioning of a lipoprotein complex (vitellogenin) to embryos as the molecular mechanism underlying variation in multiple traits throughout the life of an animal. The production of sub-optimal progeny by young mothers likely reflects a trade-off between the competing fitness traits of a short generation time and progeny survival and fecundity. |
---|