Cargando…
Classification of optic disc shape in glaucoma using machine learning based on quantified ocular parameters
PURPOSE: This study aimed to develop a machine learning-based algorithm for objective classification of the optic disc in patients with open-angle glaucoma (OAG), using quantitative parameters obtained from ophthalmic examination instruments. METHODS: This study enrolled 163 eyes of 105 OAG patients...
Autores principales: | Omodaka, Kazuko, An, Guangzhou, Tsuda, Satoru, Shiga, Yukihiro, Takada, Naoko, Kikawa, Tsutomu, Takahashi, Hidetoshi, Yokota, Hideo, Akiba, Masahiro, Nakazawa, Toru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5736185/ https://www.ncbi.nlm.nih.gov/pubmed/29261773 http://dx.doi.org/10.1371/journal.pone.0190012 |
Ejemplares similares
-
Comparison of Machine-Learning Classification Models for Glaucoma Management
por: An, Guangzhou, et al.
Publicado: (2018) -
Glaucoma Diagnosis with Machine Learning Based on Optical Coherence Tomography and Color Fundus Images
por: An, Guangzhou, et al.
Publicado: (2019) -
Pilot study for three-dimensional assessment of laminar pore structure in patients with glaucoma, as measured with swept source optical coherence tomography
por: Omodaka, Kazuko, et al.
Publicado: (2018) -
OCT-Based Quantification and Classification of Optic Disc Structure in Glaucoma Patients
por: Takada, Naoko, et al.
Publicado: (2016) -
Usefulness of axonal tract-dependent OCT macular sectors for evaluating structural change in normal-tension glaucoma
por: Omodaka, Kazuko, et al.
Publicado: (2017)