Cargando…
Improved visualization of breast tissue on a dedicated breast PET system through ergonomic redesign of the imaging table
BACKGROUND: Breast lesions closer than 2 cm to the chest wall are difficult to position in the field of view of dedicated breast PET (db-PET) systems. This inability to detect such lesions is a significant limitation of these systems. The primary objective of this study was to determine if modificat...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5736520/ https://www.ncbi.nlm.nih.gov/pubmed/29260333 http://dx.doi.org/10.1186/s13550-017-0351-7 |
Sumario: | BACKGROUND: Breast lesions closer than 2 cm to the chest wall are difficult to position in the field of view of dedicated breast PET (db-PET) systems. This inability to detect such lesions is a significant limitation of these systems. The primary objective of this study was to determine if modifications to the design of the imaging table and detector used for a db-PET system would enable improved visualization of breast tissue close to the chest wall. All studies were performed on a commercially available db-PET system (Mammi-PET). A central square section of the imaging table, containing the standard 180-mm circular aperture, was modified such that it could be removed and replaced by thinner sections with a larger aperture. Additional changes were made to the cover plate of the detector array and the patient mattress. A total of 60 patients were studied. After administration of F-18 FDG, 30 patients were imaged with a 220-mm-diameter aperture and the standard aperture, and 30 patients with a 200-mm aperture and the standard aperture. On all scans, the length of breast tissue in the field of view was measured as the greatest extent of tissue from the nipple back to the posterior edge of the breast. Image quality and patient comfort were recorded. RESULTS: Averaged over both breasts, relative to the standard aperture, the increase in breast length was 12.5 + 7.7 mm with the 220-mm aperture, and 12.3 + 6.5 mm with the 200-mm aperture (p < 0.05 for both apertures). In ~ 5% of cases, the larger apertures resulted in some degradation in image quality due to closer proximity to cardiac/hepatic activity. In 10–20% of cases, movement of the breast tissue was observed as the detector ring was moved to scan the anterior region of the breast. The patient survey indicated no significant difference in the comfort level between the standard aperture and either of the prototype apertures. CONCLUSIONS: Modifications to the image table and system resulted in a significant gain in the volume of breast tissue that could be imaged on the db-PET system and should allow better visualization of lesions close to the chest wall. |
---|