Cargando…
Deep-learning-based ghost imaging
In this manuscript, we propose a novel framework of computational ghost imaging, i.e., ghost imaging using deep learning (GIDL). With a set of images reconstructed using traditional GI and the corresponding ground-truth counterparts, a deep neural network was trained so that it can learn the sensing...
Autores principales: | Lyu, Meng, Wang, Wei, Wang, Hao, Wang, Haichao, Li, Guowei, Chen, Ni, Situ, Guohai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5736587/ https://www.ncbi.nlm.nih.gov/pubmed/29259269 http://dx.doi.org/10.1038/s41598-017-18171-7 |
Ejemplares similares
-
Author Correction: Deep-learning-based ghost imaging
por: Lyu, Meng, et al.
Publicado: (2018) -
Far-field super-resolution ghost imaging with a deep neural network constraint
por: Wang, Fei, et al.
Publicado: (2022) -
Ghost Imaging Based on Deep Learning
por: He, Yuchen, et al.
Publicado: (2018) -
High Speed Computational Ghost Imaging via Spatial Sweeping
por: Wang, Yuwang, et al.
Publicado: (2017) -
DeepGhost: real-time computational ghost imaging via deep learning
por: Rizvi, Saad, et al.
Publicado: (2020)