Cargando…
Reservoir computing using dynamic memristors for temporal information processing
Reservoir computing systems utilize dynamic reservoirs having short-term memory to project features from the temporal inputs into a high-dimensional feature space. A readout function layer can then effectively analyze the projected features for tasks, such as classification and time-series analysis....
Autores principales: | Du, Chao, Cai, Fuxi, Zidan, Mohammed A., Ma, Wen, Lee, Seung Hwan, Lu, Wei D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5736649/ https://www.ncbi.nlm.nih.gov/pubmed/29259188 http://dx.doi.org/10.1038/s41467-017-02337-y |
Ejemplares similares
-
Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing
por: Zhong, Yanan, et al.
Publicado: (2021) -
LiNbO(3) dynamic memristors for reservoir computing
por: Zhao, Yuanxi, et al.
Publicado: (2023) -
Natural quantum reservoir computing for temporal information processing
por: Suzuki, Yudai, et al.
Publicado: (2022) -
In-sensor reservoir computing for language learning via two-dimensional memristors
por: Sun, Linfeng, et al.
Publicado: (2021) -
Simulation platform for pattern recognition based on reservoir computing with memristor networks
por: Tanaka, Gouhei, et al.
Publicado: (2022)