Cargando…

Homoacetogenesis in Deep-Sea Chloroflexi, as Inferred by Single-Cell Genomics, Provides a Link to Reductive Dehalogenation in Terrestrial Dehalococcoidetes

The deep marine subsurface is one of the largest unexplored biospheres on Earth and is widely inhabited by members of the phylum Chloroflexi. In this report, we investigated genomes of single cells obtained from deep-sea sediments of the Peruvian Margin, which are enriched in such Chloroflexi. 16S r...

Descripción completa

Detalles Bibliográficos
Autores principales: Sewell, Holly L., Kaster, Anne-Kristin, Spormann, Alfred M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5736913/
https://www.ncbi.nlm.nih.gov/pubmed/29259088
http://dx.doi.org/10.1128/mBio.02022-17
_version_ 1783287443819069440
author Sewell, Holly L.
Kaster, Anne-Kristin
Spormann, Alfred M.
author_facet Sewell, Holly L.
Kaster, Anne-Kristin
Spormann, Alfred M.
author_sort Sewell, Holly L.
collection PubMed
description The deep marine subsurface is one of the largest unexplored biospheres on Earth and is widely inhabited by members of the phylum Chloroflexi. In this report, we investigated genomes of single cells obtained from deep-sea sediments of the Peruvian Margin, which are enriched in such Chloroflexi. 16S rRNA gene sequence analysis placed two of these single-cell-derived genomes (DscP3 and Dsc4) in a clade of subphylum I Chloroflexi which were previously recovered from deep-sea sediment in the Okinawa Trough and a third (DscP2-2) as a member of the previously reported DscP2 population from Peruvian Margin site 1230. The presence of genes encoding enzymes of a complete Wood-Ljungdahl pathway, glycolysis/gluconeogenesis, a Rhodobacter nitrogen fixation (Rnf) complex, glyosyltransferases, and formate dehydrogenases in the single-cell genomes of DscP3 and Dsc4 and the presence of an NADH-dependent reduced ferredoxin:NADP oxidoreductase (Nfn) and Rnf in the genome of DscP2-2 imply a homoacetogenic lifestyle of these abundant marine Chloroflexi. We also report here the first complete pathway for anaerobic benzoate oxidation to acetyl coenzyme A (CoA) in the phylum Chloroflexi (DscP3 and Dsc4), including a class I benzoyl-CoA reductase. Of remarkable evolutionary significance, we discovered a gene encoding a formate dehydrogenase (FdnI) with reciprocal closest identity to the formate dehydrogenase-like protein (complex iron-sulfur molybdoenzyme [CISM], DET0187) of terrestrial Dehalococcoides/Dehalogenimonas spp. This formate dehydrogenase-like protein has been shown to lack formate dehydrogenase activity in Dehalococcoides/Dehalogenimonas spp. and is instead hypothesized to couple HupL hydrogenase to a reductive dehalogenase in the catabolic reductive dehalogenation pathway. This finding of a close functional homologue provides an important missing link for understanding the origin and the metabolic core of terrestrial Dehalococcoides/Dehalogenimonas spp. and of reductive dehalogenation, as well as the biology of abundant deep-sea Chloroflexi.
format Online
Article
Text
id pubmed-5736913
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-57369132017-12-21 Homoacetogenesis in Deep-Sea Chloroflexi, as Inferred by Single-Cell Genomics, Provides a Link to Reductive Dehalogenation in Terrestrial Dehalococcoidetes Sewell, Holly L. Kaster, Anne-Kristin Spormann, Alfred M. mBio Research Article The deep marine subsurface is one of the largest unexplored biospheres on Earth and is widely inhabited by members of the phylum Chloroflexi. In this report, we investigated genomes of single cells obtained from deep-sea sediments of the Peruvian Margin, which are enriched in such Chloroflexi. 16S rRNA gene sequence analysis placed two of these single-cell-derived genomes (DscP3 and Dsc4) in a clade of subphylum I Chloroflexi which were previously recovered from deep-sea sediment in the Okinawa Trough and a third (DscP2-2) as a member of the previously reported DscP2 population from Peruvian Margin site 1230. The presence of genes encoding enzymes of a complete Wood-Ljungdahl pathway, glycolysis/gluconeogenesis, a Rhodobacter nitrogen fixation (Rnf) complex, glyosyltransferases, and formate dehydrogenases in the single-cell genomes of DscP3 and Dsc4 and the presence of an NADH-dependent reduced ferredoxin:NADP oxidoreductase (Nfn) and Rnf in the genome of DscP2-2 imply a homoacetogenic lifestyle of these abundant marine Chloroflexi. We also report here the first complete pathway for anaerobic benzoate oxidation to acetyl coenzyme A (CoA) in the phylum Chloroflexi (DscP3 and Dsc4), including a class I benzoyl-CoA reductase. Of remarkable evolutionary significance, we discovered a gene encoding a formate dehydrogenase (FdnI) with reciprocal closest identity to the formate dehydrogenase-like protein (complex iron-sulfur molybdoenzyme [CISM], DET0187) of terrestrial Dehalococcoides/Dehalogenimonas spp. This formate dehydrogenase-like protein has been shown to lack formate dehydrogenase activity in Dehalococcoides/Dehalogenimonas spp. and is instead hypothesized to couple HupL hydrogenase to a reductive dehalogenase in the catabolic reductive dehalogenation pathway. This finding of a close functional homologue provides an important missing link for understanding the origin and the metabolic core of terrestrial Dehalococcoides/Dehalogenimonas spp. and of reductive dehalogenation, as well as the biology of abundant deep-sea Chloroflexi. American Society for Microbiology 2017-12-19 /pmc/articles/PMC5736913/ /pubmed/29259088 http://dx.doi.org/10.1128/mBio.02022-17 Text en Copyright © 2017 Sewell et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Sewell, Holly L.
Kaster, Anne-Kristin
Spormann, Alfred M.
Homoacetogenesis in Deep-Sea Chloroflexi, as Inferred by Single-Cell Genomics, Provides a Link to Reductive Dehalogenation in Terrestrial Dehalococcoidetes
title Homoacetogenesis in Deep-Sea Chloroflexi, as Inferred by Single-Cell Genomics, Provides a Link to Reductive Dehalogenation in Terrestrial Dehalococcoidetes
title_full Homoacetogenesis in Deep-Sea Chloroflexi, as Inferred by Single-Cell Genomics, Provides a Link to Reductive Dehalogenation in Terrestrial Dehalococcoidetes
title_fullStr Homoacetogenesis in Deep-Sea Chloroflexi, as Inferred by Single-Cell Genomics, Provides a Link to Reductive Dehalogenation in Terrestrial Dehalococcoidetes
title_full_unstemmed Homoacetogenesis in Deep-Sea Chloroflexi, as Inferred by Single-Cell Genomics, Provides a Link to Reductive Dehalogenation in Terrestrial Dehalococcoidetes
title_short Homoacetogenesis in Deep-Sea Chloroflexi, as Inferred by Single-Cell Genomics, Provides a Link to Reductive Dehalogenation in Terrestrial Dehalococcoidetes
title_sort homoacetogenesis in deep-sea chloroflexi, as inferred by single-cell genomics, provides a link to reductive dehalogenation in terrestrial dehalococcoidetes
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5736913/
https://www.ncbi.nlm.nih.gov/pubmed/29259088
http://dx.doi.org/10.1128/mBio.02022-17
work_keys_str_mv AT sewellhollyl homoacetogenesisindeepseachloroflexiasinferredbysinglecellgenomicsprovidesalinktoreductivedehalogenationinterrestrialdehalococcoidetes
AT kasterannekristin homoacetogenesisindeepseachloroflexiasinferredbysinglecellgenomicsprovidesalinktoreductivedehalogenationinterrestrialdehalococcoidetes
AT spormannalfredm homoacetogenesisindeepseachloroflexiasinferredbysinglecellgenomicsprovidesalinktoreductivedehalogenationinterrestrialdehalococcoidetes