Cargando…
Electroionic Antagonistic Muscles Based on Nitrogen‐Doped Carbons Derived from Poly(Triazine‐Triptycene)
Electroactive soft actuators and bioinspired artificial muscles have received burgeoning interest as essential components in future electronic devices such as soft haptic‐feedback systems, human‐friendly wearable electronics, and active biomedical devices. However, important challenging issues inclu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5737102/ https://www.ncbi.nlm.nih.gov/pubmed/29270349 http://dx.doi.org/10.1002/advs.201700410 |
_version_ | 1783287477521350656 |
---|---|
author | Roy, Sandipan Kim, Jaehwan Kotal, Moumita Kim, Kwang Jin Oh, Il‐Kwon |
author_facet | Roy, Sandipan Kim, Jaehwan Kotal, Moumita Kim, Kwang Jin Oh, Il‐Kwon |
author_sort | Roy, Sandipan |
collection | PubMed |
description | Electroactive soft actuators and bioinspired artificial muscles have received burgeoning interest as essential components in future electronic devices such as soft haptic‐feedback systems, human‐friendly wearable electronics, and active biomedical devices. However, important challenging issues including fast response time, ultralow input power, robust operation in harsh environments, high‐resolution controllability, and cost‐effectiveness remain to be resolved for more practical applications. Here, an electroionic antagonistic artificial muscle is reported based on hierarchically porous nitrogen‐doped carbon (HPNC) electrodes derived from a microporous poly(triazine‐triptycene) organic framework (PtztpOF). The HPNC, which exhibits hierarchically micro‐ and mesoporous structures, high specific capacitance of 330 F g(−1) in aqueous solution, large specific surface area of 830.46 m(2) g(−1), and graphitic nitrogen doping, offers high electrical conductivity of 0.073 MS m(−1) and outstanding volumetric capacitance of 10.4 MF m(−3). Furthermore, it is demonstrated that a novel electroionic antagonistic muscle based on HPNC electrodes successfully displays extremely reliable and large bending deformations and long‐term durability under ultralow input voltages. Therefore, microporous polymer or covalent organic frameworks can be applied to provide significant improvements in electroactive artificial muscles, which can play key roles as technological advances toward bioinspired actuating devices required for next‐generation soft and wearable electronics. |
format | Online Article Text |
id | pubmed-5737102 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-57371022017-12-21 Electroionic Antagonistic Muscles Based on Nitrogen‐Doped Carbons Derived from Poly(Triazine‐Triptycene) Roy, Sandipan Kim, Jaehwan Kotal, Moumita Kim, Kwang Jin Oh, Il‐Kwon Adv Sci (Weinh) Full Papers Electroactive soft actuators and bioinspired artificial muscles have received burgeoning interest as essential components in future electronic devices such as soft haptic‐feedback systems, human‐friendly wearable electronics, and active biomedical devices. However, important challenging issues including fast response time, ultralow input power, robust operation in harsh environments, high‐resolution controllability, and cost‐effectiveness remain to be resolved for more practical applications. Here, an electroionic antagonistic artificial muscle is reported based on hierarchically porous nitrogen‐doped carbon (HPNC) electrodes derived from a microporous poly(triazine‐triptycene) organic framework (PtztpOF). The HPNC, which exhibits hierarchically micro‐ and mesoporous structures, high specific capacitance of 330 F g(−1) in aqueous solution, large specific surface area of 830.46 m(2) g(−1), and graphitic nitrogen doping, offers high electrical conductivity of 0.073 MS m(−1) and outstanding volumetric capacitance of 10.4 MF m(−3). Furthermore, it is demonstrated that a novel electroionic antagonistic muscle based on HPNC electrodes successfully displays extremely reliable and large bending deformations and long‐term durability under ultralow input voltages. Therefore, microporous polymer or covalent organic frameworks can be applied to provide significant improvements in electroactive artificial muscles, which can play key roles as technological advances toward bioinspired actuating devices required for next‐generation soft and wearable electronics. John Wiley and Sons Inc. 2017-10-11 /pmc/articles/PMC5737102/ /pubmed/29270349 http://dx.doi.org/10.1002/advs.201700410 Text en © 2017 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Full Papers Roy, Sandipan Kim, Jaehwan Kotal, Moumita Kim, Kwang Jin Oh, Il‐Kwon Electroionic Antagonistic Muscles Based on Nitrogen‐Doped Carbons Derived from Poly(Triazine‐Triptycene) |
title | Electroionic Antagonistic Muscles Based on Nitrogen‐Doped Carbons Derived from Poly(Triazine‐Triptycene) |
title_full | Electroionic Antagonistic Muscles Based on Nitrogen‐Doped Carbons Derived from Poly(Triazine‐Triptycene) |
title_fullStr | Electroionic Antagonistic Muscles Based on Nitrogen‐Doped Carbons Derived from Poly(Triazine‐Triptycene) |
title_full_unstemmed | Electroionic Antagonistic Muscles Based on Nitrogen‐Doped Carbons Derived from Poly(Triazine‐Triptycene) |
title_short | Electroionic Antagonistic Muscles Based on Nitrogen‐Doped Carbons Derived from Poly(Triazine‐Triptycene) |
title_sort | electroionic antagonistic muscles based on nitrogen‐doped carbons derived from poly(triazine‐triptycene) |
topic | Full Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5737102/ https://www.ncbi.nlm.nih.gov/pubmed/29270349 http://dx.doi.org/10.1002/advs.201700410 |
work_keys_str_mv | AT roysandipan electroionicantagonisticmusclesbasedonnitrogendopedcarbonsderivedfrompolytriazinetriptycene AT kimjaehwan electroionicantagonisticmusclesbasedonnitrogendopedcarbonsderivedfrompolytriazinetriptycene AT kotalmoumita electroionicantagonisticmusclesbasedonnitrogendopedcarbonsderivedfrompolytriazinetriptycene AT kimkwangjin electroionicantagonisticmusclesbasedonnitrogendopedcarbonsderivedfrompolytriazinetriptycene AT ohilkwon electroionicantagonisticmusclesbasedonnitrogendopedcarbonsderivedfrompolytriazinetriptycene |