Cargando…
Using neural networks for reducing the dimensions of single-cell RNA-Seq data
While only recently developed, the ability to profile expression data in single cells (scRNA-Seq) has already led to several important studies and findings. However, this technology has also raised several new computational challenges. These include questions about the best methods for clustering sc...
Autores principales: | Lin, Chieh, Jain, Siddhartha, Kim, Hannah, Bar-Joseph, Ziv |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5737331/ https://www.ncbi.nlm.nih.gov/pubmed/28973464 http://dx.doi.org/10.1093/nar/gkx681 |
Ejemplares similares
-
Cell lineage inference from SNP and scRNA-Seq data
por: Ding, Jun, et al.
Publicado: (2019) -
Using single cell atlas data to reconstruct regulatory networks
por: Song, Qi, et al.
Publicado: (2023) -
Joint dimension reduction and clustering analysis of single-cell RNA-seq and spatial transcriptomics data
por: Liu, Wei, et al.
Publicado: (2022) -
Network embedding-based representation learning for single cell RNA-seq data
por: Li, Xiangyu, et al.
Publicado: (2017) -
RUV-III-NB: normalization of single cell RNA-seq data
por: Salim, Agus, et al.
Publicado: (2022)