Cargando…
Dynamic changes in methylome and transcriptome patterns in response to methyltransferase inhibitor 5-azacytidine treatment in citrus
DNA methylation is known to play an important role in various developmental processes in plants. However, there is a general lack of understanding about the possible functions of DNA methylation in fruit trees. Using callus as a model, methylome, transcriptome and metabolite changes were assessed af...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5737679/ https://www.ncbi.nlm.nih.gov/pubmed/28575160 http://dx.doi.org/10.1093/dnares/dsx021 |
Sumario: | DNA methylation is known to play an important role in various developmental processes in plants. However, there is a general lack of understanding about the possible functions of DNA methylation in fruit trees. Using callus as a model, methylome, transcriptome and metabolite changes were assessed after treatment with the DNA methyltransferase inhibitor 5-azacytidine (5azaC). Genome-wide methylome analysis revealed the demethylation of a diverse of genes, including many genes encoding transcription factors (TFs), genes involved in biological processes, and the up-regulation of a wide range of transposable elements (TEs). Combined with the RNA-seq data, we observed no obvious genome-wide correlation between the changes in methylation status and expression levels. Furthermore, 5azaC treatment induced carotenoid degradation along with strong activation of carotenoid cleavage dioxygenases 1 (CpCCD1). Functional complementation analysis in bacterial system showed that CpCCD1 exhibited strong catalytic activities toward zeaxanthin, β-carotene and lycopene. In summary, 5azaC treatments induced carotenoid degradation by CpCCD1 activation and led to a genome-wide demethylation effect. |
---|