Cargando…

Three-dimensional dose prediction and validation with the radiobiological gamma index based on a relative seriality model for head-and-neck IMRT

This study proposes a quality assurance (QA) method incorporating radiobiological factors based on the QUANTEC-determined tumor control probability and the normal tissue complication probability (NTCP) of head-and-neck intensity-modulated radiation therapy (HN-IMRT). Per-beam measurements were condu...

Descripción completa

Detalles Bibliográficos
Autores principales: Hamatani, Noriaki, Sumida, Iori, Takahashi, Yutaka, Oda, Michio, Seo, Yuji, Isohashi, Fumiaki, Tamari, Keisuke, Ogawa, Kazuhiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5737806/
https://www.ncbi.nlm.nih.gov/pubmed/28430990
http://dx.doi.org/10.1093/jrr/rrx017
Descripción
Sumario:This study proposes a quality assurance (QA) method incorporating radiobiological factors based on the QUANTEC-determined tumor control probability and the normal tissue complication probability (NTCP) of head-and-neck intensity-modulated radiation therapy (HN-IMRT). Per-beam measurements were conducted for 20 cases using a 2D detector array. Three-dimensional predicted dose distributions within targets and organs at risk were reconstructed based on the per-beam QA results derived from differences between planned and measured doses. Under the predicted dose distributions, the differences between the physical and radiobiological gamma indices (PGI and RGI, respectively) based on the relative seriality (RS) model were evaluated. The NTCP values in the RS and Niemierko models were compared. The dose covers 98% (D(98%)) of the clinical target volume (CTV) decreased by 3.2% (P < 0.001), and the mean dose of the ipsilateral parotid increased by 6.3% (P < 0.001) compared with the original dose. RGI passing rates in the CTV and brain stem were greater than PGI ones by 5.8% (P < 0.001) and 2.0% (P < 0.001), respectively. The RS model’s average NTCP values for the ipsilateral and contralateral parotids under the original dose were smaller than those of the Niemierko model by 9.0% (P < 0.001) and 7.0% (P < 0.001), respectively. The 3D predicted dose evaluation with RGI based on the RS model was introduced for QA of HN-IMRT, leading to dose evaluation for each organ with consideration of the radiobiological effect. This method constitutes a rational way to perform QA of HN-IMRT in clinical practice.