Cargando…
Advanced multi-loop algorithms for RNA secondary structure prediction reveal that the simplest model is best
Algorithmic prediction of RNA secondary structure has been an area of active inquiry since the 1970s. Despite many innovations since then, our best techniques are not yet perfect. The workhorses of the RNA secondary structure prediction engine are recursions first described by Zuker and Stiegler in...
Autores principales: | Ward, Max, Datta, Amitava, Wise, Michael, Mathews, David H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5737859/ https://www.ncbi.nlm.nih.gov/pubmed/28586479 http://dx.doi.org/10.1093/nar/gkx512 |
Ejemplares similares
-
Deep learning models for RNA secondary structure prediction (probably) do not generalize across families
por: Szikszai, Marcell, et al.
Publicado: (2022) -
Dynalign II: common secondary structure prediction for RNA homologs with domain insertions
por: Fu, Yinghan, et al.
Publicado: (2014) -
When the Best Pandemic Models are the Simplest
por: Jahedi, Sana, et al.
Publicado: (2020) -
McGenus: a Monte Carlo algorithm to predict RNA secondary structures with pseudoknots
por: Bon, Michaël, et al.
Publicado: (2013) -
A set of nearest neighbor parameters for predicting the enthalpy change of RNA secondary structure formation
por: Lu, Zhi John, et al.
Publicado: (2006)