Cargando…
An improved wrapper-based feature selection method for machinery fault diagnosis
A major issue of machinery fault diagnosis using vibration signals is that it is over-reliant on personnel knowledge and experience in interpreting the signal. Thus, machine learning has been adapted for machinery fault diagnosis. The quantity and quality of the input features, however, influence th...
Autores principales: | Hui, Kar Hoou, Ooi, Ching Sheng, Lim, Meng Hee, Leong, Mohd Salman, Al-Obaidi, Salah Mahdi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5738058/ https://www.ncbi.nlm.nih.gov/pubmed/29261689 http://dx.doi.org/10.1371/journal.pone.0189143 |
Ejemplares similares
-
Noise Eliminated Ensemble Empirical Mode Decomposition Scalogram Analysis for Rotating Machinery Fault Diagnosis
por: Faysal, Atik, et al.
Publicado: (2021) -
Ranking of characteristic features in combined wrapper approaches to selection
por: Stańczyk, Urszula
Publicado: (2014) -
Artificial Intelligence based wrapper for high dimensional feature selection
por: Jain, Rahi, et al.
Publicado: (2023) -
A Novel Method for Fault Diagnosis of Rotating Machinery
por: Tang, Meng, et al.
Publicado: (2022) -
Wrappers for Medical Journals
Publicado: (1871)