Cargando…
Influence of riverine input on the growth of Glycymeris glycymeris in the Bay of Brest, North-West France
A crossdated, replicated, chronology of 114 years (1901–2014) was developed from internal growth increments in the shells of Glycymeris glycymeris samples collected monthly from the Bay of Brest, France. Bivalve sampling was undertaken between 2014 and 2015 using a dredge. In total 401 live specimen...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5738111/ https://www.ncbi.nlm.nih.gov/pubmed/29261749 http://dx.doi.org/10.1371/journal.pone.0189782 |
_version_ | 1783287634319114240 |
---|---|
author | Featherstone, Amy M. Butler, Paul G. Peharda, Melita Chauvaud, Laurent Thébault, Julien |
author_facet | Featherstone, Amy M. Butler, Paul G. Peharda, Melita Chauvaud, Laurent Thébault, Julien |
author_sort | Featherstone, Amy M. |
collection | PubMed |
description | A crossdated, replicated, chronology of 114 years (1901–2014) was developed from internal growth increments in the shells of Glycymeris glycymeris samples collected monthly from the Bay of Brest, France. Bivalve sampling was undertaken between 2014 and 2015 using a dredge. In total 401 live specimens and 243 articulated paired valves from dead specimens were collected, of which 38 individuals were used to build the chronology. Chronology strength, assessed as the Expressed Population Signal, was above 0.7 throughout, falling below the generally accepted threshold of 0.85 before 1975 because of reduced sample depth. Significant positive correlations were identified between the shell growth and the annual averages of rainfall (1975–2008; r = 0.34) and inflow from the river Elorn (1989–2009; r = 0.60). A significant negative correlation was identified between shell growth and the annual average salinity (1998–2014; r = -0.62). Analysis of the monthly averages indicates that these correlations are associated with the winter months (November–February) preceding the G. glycymeris growth season suggesting that winter conditions predispose the benthic environment for later shell growth. Concentration of suspended particulate matter within the river in February is also positively correlated with shell growth, leading to the conclusion that food availability is also important to the growth of G. glycymeris in the Bay of Brest. With the addition of principle components analysis, we were able to determine that inflow from the River Elorn, nitrite levels and salinity were the fundamental drivers of G. glycymeris growth and that these environmental parameters were all linked. |
format | Online Article Text |
id | pubmed-5738111 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-57381112017-12-29 Influence of riverine input on the growth of Glycymeris glycymeris in the Bay of Brest, North-West France Featherstone, Amy M. Butler, Paul G. Peharda, Melita Chauvaud, Laurent Thébault, Julien PLoS One Research Article A crossdated, replicated, chronology of 114 years (1901–2014) was developed from internal growth increments in the shells of Glycymeris glycymeris samples collected monthly from the Bay of Brest, France. Bivalve sampling was undertaken between 2014 and 2015 using a dredge. In total 401 live specimens and 243 articulated paired valves from dead specimens were collected, of which 38 individuals were used to build the chronology. Chronology strength, assessed as the Expressed Population Signal, was above 0.7 throughout, falling below the generally accepted threshold of 0.85 before 1975 because of reduced sample depth. Significant positive correlations were identified between the shell growth and the annual averages of rainfall (1975–2008; r = 0.34) and inflow from the river Elorn (1989–2009; r = 0.60). A significant negative correlation was identified between shell growth and the annual average salinity (1998–2014; r = -0.62). Analysis of the monthly averages indicates that these correlations are associated with the winter months (November–February) preceding the G. glycymeris growth season suggesting that winter conditions predispose the benthic environment for later shell growth. Concentration of suspended particulate matter within the river in February is also positively correlated with shell growth, leading to the conclusion that food availability is also important to the growth of G. glycymeris in the Bay of Brest. With the addition of principle components analysis, we were able to determine that inflow from the River Elorn, nitrite levels and salinity were the fundamental drivers of G. glycymeris growth and that these environmental parameters were all linked. Public Library of Science 2017-12-20 /pmc/articles/PMC5738111/ /pubmed/29261749 http://dx.doi.org/10.1371/journal.pone.0189782 Text en © 2017 Featherstone et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Featherstone, Amy M. Butler, Paul G. Peharda, Melita Chauvaud, Laurent Thébault, Julien Influence of riverine input on the growth of Glycymeris glycymeris in the Bay of Brest, North-West France |
title | Influence of riverine input on the growth of Glycymeris glycymeris in the Bay of Brest, North-West France |
title_full | Influence of riverine input on the growth of Glycymeris glycymeris in the Bay of Brest, North-West France |
title_fullStr | Influence of riverine input on the growth of Glycymeris glycymeris in the Bay of Brest, North-West France |
title_full_unstemmed | Influence of riverine input on the growth of Glycymeris glycymeris in the Bay of Brest, North-West France |
title_short | Influence of riverine input on the growth of Glycymeris glycymeris in the Bay of Brest, North-West France |
title_sort | influence of riverine input on the growth of glycymeris glycymeris in the bay of brest, north-west france |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5738111/ https://www.ncbi.nlm.nih.gov/pubmed/29261749 http://dx.doi.org/10.1371/journal.pone.0189782 |
work_keys_str_mv | AT featherstoneamym influenceofriverineinputonthegrowthofglycymerisglycymerisinthebayofbrestnorthwestfrance AT butlerpaulg influenceofriverineinputonthegrowthofglycymerisglycymerisinthebayofbrestnorthwestfrance AT pehardamelita influenceofriverineinputonthegrowthofglycymerisglycymerisinthebayofbrestnorthwestfrance AT chauvaudlaurent influenceofriverineinputonthegrowthofglycymerisglycymerisinthebayofbrestnorthwestfrance AT thebaultjulien influenceofriverineinputonthegrowthofglycymerisglycymerisinthebayofbrestnorthwestfrance |