Cargando…

Incidental branch retinal artery occlusion on optical coherence tomography angiography presenting as segmental optic atrophy in a child: a case report

BACKGROUND: Retinal artery occlusion is extremely rare in the pediatric population and most patients have risk factors. We report a case of a healthy child with segmental optic atrophy, complicated by incidental branch retinal artery occlusion (BRAO). CASE PRESENTATION: A 10-year-old boy who had a h...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Ji Hyung, Yang, Hee Kyung, Lee, Ji Eun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5738177/
https://www.ncbi.nlm.nih.gov/pubmed/29258533
http://dx.doi.org/10.1186/s12886-017-0653-6
Descripción
Sumario:BACKGROUND: Retinal artery occlusion is extremely rare in the pediatric population and most patients have risk factors. We report a case of a healthy child with segmental optic atrophy, complicated by incidental branch retinal artery occlusion (BRAO). CASE PRESENTATION: A 10-year-old boy who had a history of his mother’s gestational diabetes presented with an inferonasal visual field defect in the left eye. His best-corrected visual acuities were 20/20 in both eyes (OU). Fundoscopic examination revealed segmental pallor of the left optic disc, thinning of the superotemporal rim, a relative superior entrance of the central retinal artery and superior peripapillary scleral halo. Fluorescein angiography showed patchy filling delays in the corresponding disc area without retinal vascular abnormalities. Spectral domain optical coherence tomography (SD OCT) via automated segmentation analysis demonstrated sectoral absence of the ganglion cell layer and retinal nerve fiber layer with thinning of the inner plexiform layer, inner nuclear layer and outer plexiform layer in the corresponding retina. OCT angiography (OCTA) showed focal attenuation of superficial and intermediate/deep capillary plexuses in the corresponding areas. Systemic evaluation was unremarkable. The patient was diagnosed with segmental optic atrophy caused by incidental BRAO. CONCLUSIONS: Retinal vascular occlusions are rare in childhood, and may present as segmental optic atrophy mimicking congenital anomalies. OCTA allows the detection of previous microvascular abnormalities in the chronic phase. To the best of our knowledge, this is the first report of a child with segmental optic atrophy presumably caused by BRAO, which was documented by SD OCT and OCTA in detail.