Cargando…

In vivo genome editing improves motor function and extends survival in a mouse model of ALS

Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease characterized by the progressive loss of motor neurons in the spinal cord and brain. In particular, autosomal dominant mutations in the superoxide dismutase 1 (SOD1) gene are responsible for ~20% of all familial A...

Descripción completa

Detalles Bibliográficos
Autores principales: Gaj, Thomas, Ojala, David S., Ekman, Freja K., Byrne, Leah C., Limsirichai, Prajit, Schaffer, David V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5738228/
https://www.ncbi.nlm.nih.gov/pubmed/29279867
http://dx.doi.org/10.1126/sciadv.aar3952
_version_ 1783287661237108736
author Gaj, Thomas
Ojala, David S.
Ekman, Freja K.
Byrne, Leah C.
Limsirichai, Prajit
Schaffer, David V.
author_facet Gaj, Thomas
Ojala, David S.
Ekman, Freja K.
Byrne, Leah C.
Limsirichai, Prajit
Schaffer, David V.
author_sort Gaj, Thomas
collection PubMed
description Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease characterized by the progressive loss of motor neurons in the spinal cord and brain. In particular, autosomal dominant mutations in the superoxide dismutase 1 (SOD1) gene are responsible for ~20% of all familial ALS cases. The clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated (Cas9) genome editing system holds the potential to treat autosomal dominant disorders by facilitating the introduction of frameshift-induced mutations that can disable mutant gene function. We demonstrate that CRISPR-Cas9 can be harnessed to disrupt mutant SOD1 expression in the G93A-SOD1 mouse model of ALS following in vivo delivery using an adeno-associated virus vector. Genome editing reduced mutant SOD1 protein by >2.5-fold in the lumbar and thoracic spinal cord, resulting in improved motor function and reduced muscle atrophy. Crucially, ALS mice treated by CRISPR-mediated genome editing had ~50% more motor neurons at end stage and displayed a ~37% delay in disease onset and a ~25% increase in survival compared to control animals. Thus, this study illustrates the potential for CRISPR-Cas9 to treat SOD1-linked forms of ALS and other central nervous system disorders caused by autosomal dominant mutations.
format Online
Article
Text
id pubmed-5738228
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-57382282017-12-26 In vivo genome editing improves motor function and extends survival in a mouse model of ALS Gaj, Thomas Ojala, David S. Ekman, Freja K. Byrne, Leah C. Limsirichai, Prajit Schaffer, David V. Sci Adv Research Articles Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease characterized by the progressive loss of motor neurons in the spinal cord and brain. In particular, autosomal dominant mutations in the superoxide dismutase 1 (SOD1) gene are responsible for ~20% of all familial ALS cases. The clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated (Cas9) genome editing system holds the potential to treat autosomal dominant disorders by facilitating the introduction of frameshift-induced mutations that can disable mutant gene function. We demonstrate that CRISPR-Cas9 can be harnessed to disrupt mutant SOD1 expression in the G93A-SOD1 mouse model of ALS following in vivo delivery using an adeno-associated virus vector. Genome editing reduced mutant SOD1 protein by >2.5-fold in the lumbar and thoracic spinal cord, resulting in improved motor function and reduced muscle atrophy. Crucially, ALS mice treated by CRISPR-mediated genome editing had ~50% more motor neurons at end stage and displayed a ~37% delay in disease onset and a ~25% increase in survival compared to control animals. Thus, this study illustrates the potential for CRISPR-Cas9 to treat SOD1-linked forms of ALS and other central nervous system disorders caused by autosomal dominant mutations. American Association for the Advancement of Science 2017-12-20 /pmc/articles/PMC5738228/ /pubmed/29279867 http://dx.doi.org/10.1126/sciadv.aar3952 Text en Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Gaj, Thomas
Ojala, David S.
Ekman, Freja K.
Byrne, Leah C.
Limsirichai, Prajit
Schaffer, David V.
In vivo genome editing improves motor function and extends survival in a mouse model of ALS
title In vivo genome editing improves motor function and extends survival in a mouse model of ALS
title_full In vivo genome editing improves motor function and extends survival in a mouse model of ALS
title_fullStr In vivo genome editing improves motor function and extends survival in a mouse model of ALS
title_full_unstemmed In vivo genome editing improves motor function and extends survival in a mouse model of ALS
title_short In vivo genome editing improves motor function and extends survival in a mouse model of ALS
title_sort in vivo genome editing improves motor function and extends survival in a mouse model of als
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5738228/
https://www.ncbi.nlm.nih.gov/pubmed/29279867
http://dx.doi.org/10.1126/sciadv.aar3952
work_keys_str_mv AT gajthomas invivogenomeeditingimprovesmotorfunctionandextendssurvivalinamousemodelofals
AT ojaladavids invivogenomeeditingimprovesmotorfunctionandextendssurvivalinamousemodelofals
AT ekmanfrejak invivogenomeeditingimprovesmotorfunctionandextendssurvivalinamousemodelofals
AT byrneleahc invivogenomeeditingimprovesmotorfunctionandextendssurvivalinamousemodelofals
AT limsirichaiprajit invivogenomeeditingimprovesmotorfunctionandextendssurvivalinamousemodelofals
AT schafferdavidv invivogenomeeditingimprovesmotorfunctionandextendssurvivalinamousemodelofals