Cargando…
In vivo genome editing improves motor function and extends survival in a mouse model of ALS
Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease characterized by the progressive loss of motor neurons in the spinal cord and brain. In particular, autosomal dominant mutations in the superoxide dismutase 1 (SOD1) gene are responsible for ~20% of all familial A...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5738228/ https://www.ncbi.nlm.nih.gov/pubmed/29279867 http://dx.doi.org/10.1126/sciadv.aar3952 |
_version_ | 1783287661237108736 |
---|---|
author | Gaj, Thomas Ojala, David S. Ekman, Freja K. Byrne, Leah C. Limsirichai, Prajit Schaffer, David V. |
author_facet | Gaj, Thomas Ojala, David S. Ekman, Freja K. Byrne, Leah C. Limsirichai, Prajit Schaffer, David V. |
author_sort | Gaj, Thomas |
collection | PubMed |
description | Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease characterized by the progressive loss of motor neurons in the spinal cord and brain. In particular, autosomal dominant mutations in the superoxide dismutase 1 (SOD1) gene are responsible for ~20% of all familial ALS cases. The clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated (Cas9) genome editing system holds the potential to treat autosomal dominant disorders by facilitating the introduction of frameshift-induced mutations that can disable mutant gene function. We demonstrate that CRISPR-Cas9 can be harnessed to disrupt mutant SOD1 expression in the G93A-SOD1 mouse model of ALS following in vivo delivery using an adeno-associated virus vector. Genome editing reduced mutant SOD1 protein by >2.5-fold in the lumbar and thoracic spinal cord, resulting in improved motor function and reduced muscle atrophy. Crucially, ALS mice treated by CRISPR-mediated genome editing had ~50% more motor neurons at end stage and displayed a ~37% delay in disease onset and a ~25% increase in survival compared to control animals. Thus, this study illustrates the potential for CRISPR-Cas9 to treat SOD1-linked forms of ALS and other central nervous system disorders caused by autosomal dominant mutations. |
format | Online Article Text |
id | pubmed-5738228 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-57382282017-12-26 In vivo genome editing improves motor function and extends survival in a mouse model of ALS Gaj, Thomas Ojala, David S. Ekman, Freja K. Byrne, Leah C. Limsirichai, Prajit Schaffer, David V. Sci Adv Research Articles Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease characterized by the progressive loss of motor neurons in the spinal cord and brain. In particular, autosomal dominant mutations in the superoxide dismutase 1 (SOD1) gene are responsible for ~20% of all familial ALS cases. The clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated (Cas9) genome editing system holds the potential to treat autosomal dominant disorders by facilitating the introduction of frameshift-induced mutations that can disable mutant gene function. We demonstrate that CRISPR-Cas9 can be harnessed to disrupt mutant SOD1 expression in the G93A-SOD1 mouse model of ALS following in vivo delivery using an adeno-associated virus vector. Genome editing reduced mutant SOD1 protein by >2.5-fold in the lumbar and thoracic spinal cord, resulting in improved motor function and reduced muscle atrophy. Crucially, ALS mice treated by CRISPR-mediated genome editing had ~50% more motor neurons at end stage and displayed a ~37% delay in disease onset and a ~25% increase in survival compared to control animals. Thus, this study illustrates the potential for CRISPR-Cas9 to treat SOD1-linked forms of ALS and other central nervous system disorders caused by autosomal dominant mutations. American Association for the Advancement of Science 2017-12-20 /pmc/articles/PMC5738228/ /pubmed/29279867 http://dx.doi.org/10.1126/sciadv.aar3952 Text en Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Gaj, Thomas Ojala, David S. Ekman, Freja K. Byrne, Leah C. Limsirichai, Prajit Schaffer, David V. In vivo genome editing improves motor function and extends survival in a mouse model of ALS |
title | In vivo genome editing improves motor function and extends survival in a mouse model of ALS |
title_full | In vivo genome editing improves motor function and extends survival in a mouse model of ALS |
title_fullStr | In vivo genome editing improves motor function and extends survival in a mouse model of ALS |
title_full_unstemmed | In vivo genome editing improves motor function and extends survival in a mouse model of ALS |
title_short | In vivo genome editing improves motor function and extends survival in a mouse model of ALS |
title_sort | in vivo genome editing improves motor function and extends survival in a mouse model of als |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5738228/ https://www.ncbi.nlm.nih.gov/pubmed/29279867 http://dx.doi.org/10.1126/sciadv.aar3952 |
work_keys_str_mv | AT gajthomas invivogenomeeditingimprovesmotorfunctionandextendssurvivalinamousemodelofals AT ojaladavids invivogenomeeditingimprovesmotorfunctionandextendssurvivalinamousemodelofals AT ekmanfrejak invivogenomeeditingimprovesmotorfunctionandextendssurvivalinamousemodelofals AT byrneleahc invivogenomeeditingimprovesmotorfunctionandextendssurvivalinamousemodelofals AT limsirichaiprajit invivogenomeeditingimprovesmotorfunctionandextendssurvivalinamousemodelofals AT schafferdavidv invivogenomeeditingimprovesmotorfunctionandextendssurvivalinamousemodelofals |