Cargando…
Supervised learning in spiking neural networks with FORCE training
Populations of neurons display an extraordinary diversity in the behaviors they affect and display. Machine learning techniques have recently emerged that allow us to create networks of model neurons that display behaviors of similar complexity. Here we demonstrate the direct applicability of one su...
Autores principales: | Nicola, Wilten, Clopath, Claudia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5738356/ https://www.ncbi.nlm.nih.gov/pubmed/29263361 http://dx.doi.org/10.1038/s41467-017-01827-3 |
Ejemplares similares
-
Gap junction plasticity as a mechanism to regulate network-wide oscillations
por: Pernelle, Guillaume, et al.
Publicado: (2018) -
Supervised Learning Algorithm Based on Spike Train Inner Product for Deep Spiking Neural Networks
por: Lin, Xianghong, et al.
Publicado: (2023) -
SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks
por: Zenke, Friedemann, et al.
Publicado: (2018) -
An Efficient Supervised Training Algorithm for Multilayer Spiking Neural Networks
por: Xie, Xiurui, et al.
Publicado: (2016) -
Supervised Learning With First-to-Spike Decoding in Multilayer Spiking Neural Networks
por: Gardner, Brian, et al.
Publicado: (2021)