Cargando…
Machine Learning for Nuclear Mechano-Morphometric Biomarkers in Cancer Diagnosis
Current cancer diagnosis employs various nuclear morphometric measures. While these have allowed accurate late-stage prognosis, early diagnosis is still a major challenge. Recent evidence highlights the importance of alterations in mechanical properties of single cells and their nuclei as critical d...
Autores principales: | Radhakrishnan, Adityanarayanan, Damodaran, Karthik, Soylemezoglu, Ali C., Uhler, Caroline, Shivashankar, G. V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5738417/ https://www.ncbi.nlm.nih.gov/pubmed/29263424 http://dx.doi.org/10.1038/s41598-017-17858-1 |
Ejemplares similares
-
Multi-domain translation between single-cell imaging and sequencing data using autoencoders
por: Yang, Karren Dai, et al.
Publicado: (2021) -
Mechano-genomic regulation of coronaviruses and its interplay with ageing
por: Uhler, Caroline, et al.
Publicado: (2020) -
Nuclear morphometrics and chromatin condensation patterns as disease biomarkers using a mobile microscope
por: Damodaran, Karthik, et al.
Publicado: (2019) -
Predicting cell lineages using autoencoders and optimal transport
por: Yang, Karren Dai, et al.
Publicado: (2020) -
Transfer Learning with Kernel Methods
por: Radhakrishnan, Adityanarayanan, et al.
Publicado: (2023)