Cargando…

Transcriptome sequencing analysis of alfalfa reveals CBF genes potentially playing important roles in response to freezing stress

Alfalfa (Medicago sativa L.) is an important perennial forage, with high nutritional value, which is widely grown in the world. Because of low freezing tolerance, its distribution and production are threatened and limited by winter weather. To understand the complex regulation mechanisms of freezing...

Descripción completa

Detalles Bibliográficos
Autores principales: Shu, Yongjun, Li, Wei, Zhao, Jinyue, Zhang, Sijia, Xu, Hanyun, Liu, Ying, Guo, Changhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Sociedade Brasileira de Genética 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5738619/
https://www.ncbi.nlm.nih.gov/pubmed/29111565
http://dx.doi.org/10.1590/1678-4685-GMB-2017-0053
Descripción
Sumario:Alfalfa (Medicago sativa L.) is an important perennial forage, with high nutritional value, which is widely grown in the world. Because of low freezing tolerance, its distribution and production are threatened and limited by winter weather. To understand the complex regulation mechanisms of freezing tolerance in alfalfa, we performed transcriptome sequencing analysis under cold (4 °C) and freezing (-8 °C) stresses. More than 66 million reads were generated, and we identified 5767 transcripts differentially expressed in response to cold and/or freezing stresses. These results showed that these genes were mainly classified as response to stress, transcription regulation, hormone signaling pathway, antioxidant, nodule morphogenesis, etc., implying their important roles in response to cold and freezing stresses. Furthermore, nine CBF transcripts differentially expressed were homologous to CBF genes of Mt-FTQTL6 site, conferring freezing tolerance in M. truncatula, which indicated that a genetic mechanism controlling freezing tolerance was conservative between M. truncatula and M. sativa. In summary, this transcriptome dataset highlighted the gene regulation response to cold and/or freezing stresses in alfalfa, which provides a valuable resource for future identification and functional analysis of candidate genes in determining freezing tolerance.