Cargando…

Evaluation of Antiangiogenic Efficacy of Emilia sonchifolia (L.) DC on Tumor-Specific Neovessel Formation by Regulating MMPs, VEGF, and Proinflammatory Cytokines

Formation of new blood vessels from preexisting vasculature is an indispensable process in tumor initiation, invasion, and metastasis. Novel therapeutic approaches target endothelial cells involved in the process of angiogenesis, due to their genetic stability relative to the rapidly mutating drug-r...

Descripción completa

Detalles Bibliográficos
Autores principales: Gilcy, George K, Kuttan, Girija
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5739157/
https://www.ncbi.nlm.nih.gov/pubmed/27146127
http://dx.doi.org/10.1177/1534735416630807
_version_ 1783287816653897728
author Gilcy, George K
Kuttan, Girija
author_facet Gilcy, George K
Kuttan, Girija
author_sort Gilcy, George K
collection PubMed
description Formation of new blood vessels from preexisting vasculature is an indispensable process in tumor initiation, invasion, and metastasis. Novel therapeutic approaches target endothelial cells involved in the process of angiogenesis, due to their genetic stability relative to the rapidly mutating drug-resistant cancer cells. In the present study, we investigated the effect of an active fraction from Emilia sonchifolia, belonging to the family Asteraceae, a plant well known for its anti-inflammatory and antitumor effects, on the inhibition of tumor-specific angiogenesis. Administration of the active fraction from E sonchifolia (AFES; 5 mg/kg, body weight, intraperitoneally) containing the major compound γ-humulene significantly inhibited B16F10 melanoma-induced capillary formation in C57BL/6 mice. The level of serum vascular endothelial growth factor and serum proinflammatory cytokines such as interleukin-1β, interleukin-6, tumor necrosis factor-α, and granulocyte-macrophage colony-stimulating factor were also reduced significantly. At the same time, administration of AFES significantly enhanced the production of antiangiogenic factors such as tissue inhibitor of matrix metalloproteinase-1. Dose-dependent reduction can be seen in the budding and expansion of microvessels from rat thoracic aorta by AFES treatment. Inhibition of the activation of proenzyme to active enzyme of matrix metalloproteinase along with a successful reduction of proliferation, invasion, and migration of human umbilical vein endothelial cells demonstrated the antiangiogenic effect of AFES in vitro. To date, no study has examined the antiangiogenic activity of this plant with already well-known anti-inflammatory and antitumor effects. Results obtained in the present study by using both in vivo and in vitro angiogenic models altogether proved the inhibitory effect of AFES on tumor-specific neovessel formation.
format Online
Article
Text
id pubmed-5739157
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-57391572018-01-10 Evaluation of Antiangiogenic Efficacy of Emilia sonchifolia (L.) DC on Tumor-Specific Neovessel Formation by Regulating MMPs, VEGF, and Proinflammatory Cytokines Gilcy, George K Kuttan, Girija Integr Cancer Ther E-Only Section Formation of new blood vessels from preexisting vasculature is an indispensable process in tumor initiation, invasion, and metastasis. Novel therapeutic approaches target endothelial cells involved in the process of angiogenesis, due to their genetic stability relative to the rapidly mutating drug-resistant cancer cells. In the present study, we investigated the effect of an active fraction from Emilia sonchifolia, belonging to the family Asteraceae, a plant well known for its anti-inflammatory and antitumor effects, on the inhibition of tumor-specific angiogenesis. Administration of the active fraction from E sonchifolia (AFES; 5 mg/kg, body weight, intraperitoneally) containing the major compound γ-humulene significantly inhibited B16F10 melanoma-induced capillary formation in C57BL/6 mice. The level of serum vascular endothelial growth factor and serum proinflammatory cytokines such as interleukin-1β, interleukin-6, tumor necrosis factor-α, and granulocyte-macrophage colony-stimulating factor were also reduced significantly. At the same time, administration of AFES significantly enhanced the production of antiangiogenic factors such as tissue inhibitor of matrix metalloproteinase-1. Dose-dependent reduction can be seen in the budding and expansion of microvessels from rat thoracic aorta by AFES treatment. Inhibition of the activation of proenzyme to active enzyme of matrix metalloproteinase along with a successful reduction of proliferation, invasion, and migration of human umbilical vein endothelial cells demonstrated the antiangiogenic effect of AFES in vitro. To date, no study has examined the antiangiogenic activity of this plant with already well-known anti-inflammatory and antitumor effects. Results obtained in the present study by using both in vivo and in vitro angiogenic models altogether proved the inhibitory effect of AFES on tumor-specific neovessel formation. SAGE Publications 2016-05-04 2016-12 /pmc/articles/PMC5739157/ /pubmed/27146127 http://dx.doi.org/10.1177/1534735416630807 Text en © The Author(s) 2016 http://creativecommons.org/licenses/by-nc/3.0/ This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 License (http://www.creativecommons.org/licenses/by-nc/3.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
spellingShingle E-Only Section
Gilcy, George K
Kuttan, Girija
Evaluation of Antiangiogenic Efficacy of Emilia sonchifolia (L.) DC on Tumor-Specific Neovessel Formation by Regulating MMPs, VEGF, and Proinflammatory Cytokines
title Evaluation of Antiangiogenic Efficacy of Emilia sonchifolia (L.) DC on Tumor-Specific Neovessel Formation by Regulating MMPs, VEGF, and Proinflammatory Cytokines
title_full Evaluation of Antiangiogenic Efficacy of Emilia sonchifolia (L.) DC on Tumor-Specific Neovessel Formation by Regulating MMPs, VEGF, and Proinflammatory Cytokines
title_fullStr Evaluation of Antiangiogenic Efficacy of Emilia sonchifolia (L.) DC on Tumor-Specific Neovessel Formation by Regulating MMPs, VEGF, and Proinflammatory Cytokines
title_full_unstemmed Evaluation of Antiangiogenic Efficacy of Emilia sonchifolia (L.) DC on Tumor-Specific Neovessel Formation by Regulating MMPs, VEGF, and Proinflammatory Cytokines
title_short Evaluation of Antiangiogenic Efficacy of Emilia sonchifolia (L.) DC on Tumor-Specific Neovessel Formation by Regulating MMPs, VEGF, and Proinflammatory Cytokines
title_sort evaluation of antiangiogenic efficacy of emilia sonchifolia (l.) dc on tumor-specific neovessel formation by regulating mmps, vegf, and proinflammatory cytokines
topic E-Only Section
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5739157/
https://www.ncbi.nlm.nih.gov/pubmed/27146127
http://dx.doi.org/10.1177/1534735416630807
work_keys_str_mv AT gilcygeorgek evaluationofantiangiogenicefficacyofemiliasonchifolialdcontumorspecificneovesselformationbyregulatingmmpsvegfandproinflammatorycytokines
AT kuttangirija evaluationofantiangiogenicefficacyofemiliasonchifolialdcontumorspecificneovesselformationbyregulatingmmpsvegfandproinflammatorycytokines