Cargando…
Non-linear auto-regressive models for cross-frequency coupling in neural time series
We address the issue of reliably detecting and quantifying cross-frequency coupling (CFC) in neural time series. Based on non-linear auto-regressive models, the proposed method provides a generative and parametric model of the time-varying spectral content of the signals. As this method models the e...
Autores principales: | Dupré la Tour, Tom, Tallot, Lucille, Grabot, Laetitia, Doyère, Valérie, van Wassenhove, Virginie, Grenier, Yves, Gramfort, Alexandre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5739510/ https://www.ncbi.nlm.nih.gov/pubmed/29227989 http://dx.doi.org/10.1371/journal.pcbi.1005893 |
Ejemplares similares
-
Postdiction: When Temporal Regularity Drives Space Perception through Prestimulus Alpha Oscillations
por: Grabot, Laetitia, et al.
Publicado: (2021) -
Rodents monitor their error in self-generated duration on a single trial basis
por: Kononowicz, Tadeusz Władysław, et al.
Publicado: (2022) -
Updating of aversive memories after temporal error detection is differentially modulated by mTOR across development
por: Tallot, Lucille, et al.
Publicado: (2017) -
Feature-space selection with banded ridge regression
por: la Tour, Tom Dupré, et al.
Publicado: (2022) -
Impaired Decision Making and Loss of Inhibitory-Control in a Rat Model of Huntington Disease
por: El Massioui, Nicole, et al.
Publicado: (2016)