Cargando…

Lysophosphatidylcholine induces cytotoxicity/apoptosis and IL-8 production of human endothelial cells: Related mechanisms

Increased levels of oxidized low-density lipoprotein oxLDL) are shown to elevate the risk of cardiovascular diseases such as atherosclerosis, thrombosis, stroke, and myocardial infarction. This is possibly due to the toxic effects of oxLDLs on vascular cells. Various oxLDLs including lysophosphatidy...

Descripción completa

Detalles Bibliográficos
Autores principales: Chang, Mei-Chi, Lee, Jang-Jaer, Chen, Yi-Jane, Lin, Szu-I, Lin, Li-Deh, Jein-Wen Liou, Eric, Huang, Wei-Ling, Chan, Chiu-Po, Huang, Chi-Chia, Jeng, Jiiang-Huei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5739725/
https://www.ncbi.nlm.nih.gov/pubmed/29290940
http://dx.doi.org/10.18632/oncotarget.22425
Descripción
Sumario:Increased levels of oxidized low-density lipoprotein oxLDL) are shown to elevate the risk of cardiovascular diseases such as atherosclerosis, thrombosis, stroke, and myocardial infarction. This is possibly due to the toxic effects of oxLDLs on vascular cells. Various oxLDLs including lysophosphatidylcholine (LPC) and 7-ketocholesterol injure vascular endothelial cells and stimulate inflammatory reaction. However the toxicity of LPC on endothelial cells is not clear. In this study, human endothelial cells were exposed to LPC. Cytotoxicity was measured by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay. Propidium iodide (PI) staining or PI/Annexin V dual staining flow cytometry were used to determine cell cycle progression and apoptosis. Reactive oxygen species (ROS) level was analyzed by DCFH-DA labeling flow cytometry. RNA and protein expression of endothelial cells was studied by reverse transcriptase-polymerase chain reaction and western blotting. IL-8 secretion was measured by enzyme-linked immunosorbant assay. LPC showed cytotoxicity to endothelial cells (>50 µg/ml). LPC induced cell cycle arrest and apoptosis with concomitant inhibition of cdc2 and cyclin B1 expression. LPC stimulated intracellular ROS production and ATM/Chk2, ATR/Chk1 and Akt activation. IL-8 expression and secretion in endothelial cells were induced by LPC. LPC-induced apoptosis, and IL-8 expression/secretion was attenuated by LY294002, a PI3K/Akt inhibitor. These results reveal that LPC is involved in the pathogenesis of atherosclerosis and vascular diseases by stimulation of inflammation and injury to endothelial cells. These events are related to ROS, ATM/Chk2, ATR/Chk2 and PI3K/Akt signaling. Understanding the toxic mechanisms of LPC is useful for future prevention and treatment atherosclerosis.