Cargando…
Human oncoprotein Musashi-2 N-terminal RNA recognition motif backbone assignment and identification of RNA-binding pocket
RNA-binding protein Musashi-2 (MSI2) is a key regulator in stem cells, it is over-expressed in a variety of cancers and its higher expression is associated with poor prognosis. Like Musashi-1, it contains two N-terminal RRMs (RNA-recognition Motifs, also called RBDs (RNA-binding Domains)), RRM1 and...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5739758/ https://www.ncbi.nlm.nih.gov/pubmed/29290973 http://dx.doi.org/10.18632/oncotarget.22540 |
Sumario: | RNA-binding protein Musashi-2 (MSI2) is a key regulator in stem cells, it is over-expressed in a variety of cancers and its higher expression is associated with poor prognosis. Like Musashi-1, it contains two N-terminal RRMs (RNA-recognition Motifs, also called RBDs (RNA-binding Domains)), RRM1 and RRM2, which mediate the binding to their target mRNAs. Previous studies have obtained the three-dimensional structures of the RBDs of Musashi-1 and the RBD1:RNA complex. Here we show the binding of MSI2-RRM1 to a 15nt Numb RNA in Fluorescence Polarization assay and time resolved Fluorescence Resonance Energy Transfer assay. Using nuclear magnetic resonance (NMR) spectroscopy we assigned the backbone resonances of MSI2-RRM1, and characterized the direct interaction of RRM1 to Numb RNA r(GUAGU). Our NMR titration and structure modeling studies showed that MSI2-RRM1 and MSI1-RBD1 have similar RNA binding events and binding pockets. This work adds significant information to MSI2-RRM1 structure and RNA binding pocket, and contributes to the development of MSI2 specific and MSI1/MSI2 dual inhibitors. |
---|